Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
mBio ; 10(5)2019 10 15.
Article in English | MEDLINE | ID: mdl-31615963

ABSTRACT

Proteogenomics combines proteomics, genomics, and transcriptomics and has considerably improved genome annotation in poorly investigated phylogenetic groups for which homology information is lacking. Furthermore, it can be advantageous when reinvestigating well-annotated genomes. Here, we applied an advanced proteogenomics approach, combining standard proteogenomics with peptide de novo sequencing, to refine annotation of the well-studied model fungus Sordaria macrospora We investigated samples from different developmental and physiological conditions, resulting in the detection of 104 so-far hidden proteins and annotation changes in 575 genes, including 389 splice site refinements. Significantly, our approach provides peptide-level evidence for 113 single-amino-acid variations and 15 C-terminal protein elongations originating from A-to-I RNA editing, a phenomenon recently detected in fungi. Coexpression and phylostratigraphic analysis of the refined proteome suggest that new functions in evolutionarily young genes correlate with distinct developmental stages. In conclusion, our advanced proteogenomics approach supports and promotes functional studies of fungal model systems.IMPORTANCE Next-generation sequencing techniques have considerably increased the number of completely sequenced eukaryotic genomes. These genomes are mostly automatically annotated, and ab initio gene prediction is commonly combined with homology-based search approaches and often supported by transcriptomic data. The latter in particular improve the prediction of intron splice sites and untranslated regions. However, correct prediction of translation initiation sites (TIS), alternative splice junctions, and protein-coding potential remains challenging. Here, we present an advanced proteogenomics approach, namely, the combination of proteogenomics and de novo peptide sequencing analysis, in conjunction with Blast2GO and phylostratigraphy. Using the model fungus Sordaria macrospora as an example, we provide a comprehensive view of the proteome that not only increases the functional understanding of this multicellular organism at different developmental stages but also immensely enhances the genome annotation quality.


Subject(s)
Alternative Splicing/genetics , Genome, Fungal/genetics , Peptides/metabolism , Proteogenomics/methods , Molecular Sequence Annotation , Phylogeny
2.
J Biotechnol ; 169: 51-62, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24216341

ABSTRACT

Acremonium chrysogenum is the major producer of the ß-lactam antibiotic cephalosporin C and therefore of great importance for the pharmaceutical industry. However, this filamentous fungus is known to reproduce solely by asexual means, shows only sporadic conidiospore production, and has gradual fragmentation of the vegetative mycelium into arthrospores. Due to these peculiar growth characteristics and life style, strain improvement by recombinant technologies is much more challenging than for other biotechnologically relevant fungi. Here, we describe several molecular tools for genetic engineering of A. chrysogenum, including a ΔAcku70 deletion strain for homologous recombination. No physiological or morphological changes occurred due to deletion of the ku70 gene or integration of the nat1 cassette in this recipient strain. We also used a xylose-inducible promoter from Sordaria macrospora (Smxyl) to demonstrate induction of the gfp reporter gene in A. chrysogenum. The Smxyl promoter was used for construction of a vector molecule to develop a one-step FLP/FRT recombination system in A. chrysogenum. This system was then used in the ΔAcku70 deletion strain to construct a marker-free recipient strain for targeted DNA insertion into genomic DNA. The applicability of our tools was demonstrated by construction of a marker-free transgenic strain, lacking any foreign genes.


Subject(s)
Acremonium/genetics , Anti-Bacterial Agents/metabolism , Genetic Engineering , beta-Lactams/metabolism , Acremonium/metabolism , Gene Deletion , Gene Expression Regulation , Gene Targeting , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL