Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
1.
Nanomaterials (Basel) ; 14(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39269049

ABSTRACT

The careful arrangement of nanomaterials (NMs) holds promise for revolutionizing various fields, from electronics and biosensing to medicine and optics. This review delves into the intricacies of nano-assembly (NA) techniques, focusing on oriented-assembly methodologies and stimuli-dependent approaches. The introduction provides a comprehensive overview of the significance and potential applications of NA, setting the stage for review. The oriented-assembly section elucidates methodologies for the precise alignment and organization of NMs, crucial for achieving desired functionalities. The subsequent section delves into stimuli-dependent techniques, categorizing them into chemical and physical stimuli-based approaches. Chemical stimuli-based self-assembly methods, including solvent, acid-base, biomolecule, metal ion, and gas-induced assembly, are discussed in detail by presenting examples. Additionally, physical stimuli such as light, magnetic fields, electric fields, and temperature are examined for their role in driving self-assembly processes. Looking ahead, the review outlines futuristic scopes and perspectives in NA, highlighting emerging trends and potential breakthroughs. Finally, concluding remarks summarize key findings and underscore the significance of NA in shaping future technologies. This comprehensive review serves as a valuable resource for researchers and practitioners, offering insights into the diverse methodologies and potential applications of NA in interdisciplinary research fields.

2.
Adv Exp Med Biol ; 1457: 1-31, 2024.
Article in English | MEDLINE | ID: mdl-39283418

ABSTRACT

Coronavirus disease 2019 (COVID-19) has affected not only individual lives but also the world and global systems, both natural and human-made. Besides millions of deaths and environmental challenges, the rapid spread of the infection and its very high socioeconomic impact have affected healthcare, economic status and wealth, and mental health across the globe. To better appreciate the pandemic's influence, multidisciplinary and interdisciplinary approaches are needed. In this chapter, world-leading scientists from different backgrounds share collectively their views about the pandemic's footprint and discuss challenges that face the international community.


Subject(s)
COVID-19 , Global Health , Pandemics , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Global Health/economics , Global Health/statistics & numerical data , Pandemics/economics , Pandemics/prevention & control , Pandemics/statistics & numerical data
3.
Mar Life Sci Technol ; 6(3): 515-534, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39219680

ABSTRACT

This study aimed to investigate the osteo-inductive capacity of a fucoidan polysaccharide network derived from brown algae on human adipose-derived stem cells (HA-MSCs) for bone regeneration. The physiochemical properties of the scaffold including surface morphology, surface chemistry, hydrophilicity, mechanical stiffness, and porosity were thoroughly characterized. Both in vitro and in vivo measurements implied a superior cell viability, proliferation, adhesion, and osteo-inductive performance of obtained scaffolds compared to using specific osteogenic induction medium with increased irregular growth of calcium crystallites, which mimic the structure of natural bones. That scaffold was highly biocompatible and suitable for cell cultures. Various examinations, such as quantification of mineralization, alkaline phosphatase, gene expression, and immunocytochemical staining of pre-osteocyte and bone markers confirmed that HAD-MSCs differentiate into osteoblasts, even without an osteogenic induction medium. This study provides evidence for the positive relationship and synergistic effects between the physical properties of the decellularized seaweed scaffold and the chemical composition of fucoidan in promoting the osteogenic differentiation of HA-MSCs. Altogether, the natural matrices derived from brown seaweed offers a sustainable, cost-effective, non-toxic bioinspired scaffold and holds promise for future clinical applications in orthopedics.

4.
Int J Biol Macromol ; 279(Pt 2): 135213, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216564

ABSTRACT

Several advances in skin tissue engineering have been made to restore skin damage, facilitating wound healing. Bacterial cellulose (BC), a naturally occurring polymer, has gained attention as a potential material in wound healing due to its unique physical and biological properties. In recent years, with the advent of 3D bio-printing technology, new avenues have opened for fabricating customized wound dressings and scaffolds for tissue engineering purposes. The existing literature in this field mainly focuses on the ways of modifications of bacterial cellulose to make it printable. Still, the applicability of 3D printed scaffolds for wound healing needs to be explored more. This review article focuses on the current research on using 3D-printed BC for skin regeneration, including its production methods and physical and biological properties, making it a better choice than traditional dressings. Furthermore, it also highlights the limitations and future directions for using BC in wound healing and tissue engineering applications. This review provides a comprehensive and up-to-date exploration of the applications of 3D-printed BC in wound healing, drawing insights from pre-existing studies and emphasizing patient compliance, clinical outcomes, and economic viability.

5.
Nanoscale Adv ; 6(16): 4137-4148, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39114153

ABSTRACT

Over more than a decade, lead halide perovskites (LHPs) have been popular as a next-generation semiconductor for optoelectronics. Later, all-inorganic CsPbX3 (X = Cl, Br, and I) nanocrystals (NCs) were synthesized via supersaturated recrystallization (SR) at room temperature (RT). However, compared to the hot injection (HI) method, the formation mechanism of NCs via SR-RT has not been well studied. Hence, this study will contribute to elucidating SR-RT based on the LaMer model and Hansen solubility parameter. Herein, we also demonstrate the entropy-driven mixing between two dissimilar polar-nonpolar (DMF-toluene) solvents. Next, we find that, in a poor solvent (toluene ≫ DMF in volume), ∼60 nm sized CsPbBr3 NCs were synthesized in one step, whereas in a marginal solvent (toluene ≈ DMF), ∼3.5 nm sized NCs were synthesized in two steps, indicating the importance of solvent polarity, specifically the 'solubility parameter'. In addition, in the presence of a CuBr2 additive, high-quality cubic NCs (with ∼3.8 nm and ∼21.4 nm edge sizes) were synthesized. Hence, through this study, we present a 'solubility parameter-based nanocrystal-size control model' for SR-RT processes.

6.
Chemosphere ; 363: 142779, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972455

ABSTRACT

Nanocomposites have emerged as promising materials for pollutant removal due to their unique properties. However, conventional synthesis methods often involve toxic solvents or expensive materials. In this study, we present a novel ternary nanocomposite synthesized via a simple, cost-effective vacuum filtration method. The composite consists of calcium phosphate (CaP), biowaste-derived nanocellulose (diameter <50 nm) (NC), and chitosan (CH). The nanocomposite exhibited exceptional pollutant removal capabilities due to the hybrid approach of combining adsorption and size exclusion that widens and accelerates pollutant removal. When tested with synthetic wastewater containing 10 ppm of Ni ions and 10 ppm of Congo red (CR) dye, it achieved impressive removal rates of 98.7% for Ni ions and 100% for CR dye. Moreover, the nanocomposite effectively removed heavy metals such as Cd, Ag, Al, Fe, Hg, Mo, Li, and Se at 100%, and Ba, Be, P, and Zn at 80%, 92%, 87%, and 97%, respectively, from real-world municipal wastewater. Importantly, this green nanocomposite membrane was synthesized without the use of harmful chemicals or complex modifications and operated at a high flux rate of 146 L/m2.h.MPa. Its outstanding performance highlights its potential for sustainable pollutant removal applications.


Subject(s)
Calcium Phosphates , Cellulose , Chitosan , Nanocomposites , Wastewater , Water Pollutants, Chemical , Nanocomposites/chemistry , Wastewater/chemistry , Chitosan/chemistry , Water Pollutants, Chemical/chemistry , Cellulose/chemistry , Calcium Phosphates/chemistry , Adsorption , Metals, Heavy/chemistry , Waste Disposal, Fluid/methods , Water Purification/methods , Congo Red/chemistry
7.
Int J Biol Macromol ; 276(Pt 2): 133953, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029839

ABSTRACT

Fungal infections are very alarming nowadays and are common throughout the world. Severe fungal infections may lead to a significant risk of mortality and morbidity worldwide. Sustained delivery of antifungal agents is needed to mitigate this problem. In the current study, an attempt has been made to formulate griseofulvin-loaded nanosponges using the quasi-emulsion solvent diffusion technique. For characterization, griseofulvin loaded nanosponges were tested by different instrumental techniques such as optical microscopy, scanning electron microscopy (SEM), powder X-ray diffractometer (PXRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The antifungal activity of the nanosponges was assessed against Candida albican strain using the agar well-diffusion method. Finally, the drug-loaded nanosponges' in vitro sustained release activity was evaluated. FTIR spectra showed no chemical interference between the drug and polymers. Some of the peaks of the drug are not visible in the FTIR spectrum, which suggests drug entrapment. PXRD data showed that the drug lost its high crystallinity when entrapped in the nanosponge matrix. From the morphological studies via SEM and TEM, a brief idea of the surface morphology of the nanosponges was obtained. The small pores throughout the structure proved its high porosity. The antifungal sensitivity assay was successful, and a zone of inhibition was observed in all the formulations. The in-vitro drug release study showed sustained behaviour. The sustaining effect was due to the polymer and cross-linker used, which gave rise to a porous scaffold matrix. From the results, it can be concluded that griseofulvin-loaded nanosponges can be used for antifungal drug delivery against various topical skin infections.


Subject(s)
Antifungal Agents , Cellulose , Delayed-Action Preparations , Drug Liberation , Griseofulvin , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/administration & dosage , Griseofulvin/chemistry , Griseofulvin/pharmacology , Griseofulvin/administration & dosage , Cellulose/chemistry , Cellulose/analogs & derivatives , Drug Carriers/chemistry , Spectroscopy, Fourier Transform Infrared , Drug Delivery Systems , Administration, Topical , Microbial Sensitivity Tests , Nanoparticles/chemistry , Calorimetry, Differential Scanning
8.
ACS Appl Bio Mater ; 7(6): 3568-3586, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38768373

ABSTRACT

The increasing demand for biodegradable and environmentally friendly materials is shifting the focus from traditional polymer composites to biocomposites in various applications, especially in electromagnetic shielding. Effective utilization of biopolymers demands improved properties and can be achieved to a certain extent by functionalization. Biopolymers such as cellulose, polylactic acid, and starch are some of the potential candidates for mitigating electromagnetic pollution in next-generation electronic devices because of their high aspect ratio, flexibility, light weight, high mechanical strength, thermal stability, and tunable microwave absorption to the electromagnetic interference (EMI) shielding composites. This Review provides an overview of the current advancements in EMI shielding materials and outlines recent research on EMI shielding composites that utilize various biodegradable polymer structures.


Subject(s)
Biocompatible Materials , Materials Testing , Biopolymers/chemistry , Biocompatible Materials/chemistry , Particle Size , Electromagnetic Fields
9.
Carbohydr Polym ; 338: 122198, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763724

ABSTRACT

Chitosan (CS) aerogels are highly porous (∼99 %), exhibit ultralow density, and are excellent sorbents for removing ionic pollutants and oils/organic solvents from water. Their abundant hydroxyl and amino groups facilitate the adsorption of ionic pollutants through electrostatic interaction, complexation and chelation mechanisms. Selection of suitable surface wettability is the way to separate oils/organic solvents from water. This review summarizes the most recent developments in improving the adsorption performance, mechanical strength and regeneration of CS aerogels. The structure of the paper follows the extraction of chitosan, preparation and sorption characteristics of CS aerogels for heavy metal ions, organic dyes, and oils/organic solvents, sequentially. A detailed analysis of the parameters that influence the adsorption/absorption performance of CS aerogels is carried out and their effective control for improving the performance is suggested. The analysis of research outcomes of the recently published data came up with some interesting facts that the unidirectional pore structure and characteristics of the functional group of the aerogel and pH of the adsorbate have led to the enhanced adsorption performance of the CS aerogel. Finally, the excerpts of the literature survey highlighting the difficulties and potential of CS aerogels for water remediation are proposed.

10.
Carbohydr Polym ; 337: 122161, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710576

ABSTRACT

The burgeoning interest in biopolymer 3D printing arises from its capacity to meticulously engineer tailored, intricate structures, driven by the intrinsic benefits of biopolymers-renewability, chemical functionality, and biosafety. Nevertheless, the accessibility of economical and versatile 3D-printable biopolymer-based inks remains highly constrained. This study introduces an electroconductive ink for direct-ink-writing (DIW) 3D printing, distinguished by its straightforward preparation and commendable printability and material properties. The ink relies on chitosan as a binder, carbon fibers (CF) a low-cost electroactive filler, and silk fibroin (SF) a structural stabilizer. Freeform 3D printing manifests designated patterns of electroconductive strips embedded in an elastomer, actualizing effective strain sensors. The ink's high printability is demonstrated by printing complex geometries with porous, hollow, and overhanging structures without chemical or photoinitiated reactions or support baths. The composite is lightweight (density 0.29 ± 0.01 g/cm3), electroconductive (2.64 ± 0.06 S/cm), and inexpensive (20 USD/kg), with tensile strength of 20.77 ± 0.60 MPa and Young's modulus of 3.92 ± 0.06 GPa. 3D-printed structures exhibited outstanding electromagnetic interference (EMI) shielding effectiveness of 30-31 dB, with shielding of >99.9 % incident electromagnetic waves, showcasing significant electronic application potential. Thus, this study presents a novel, easily prepared, and highly effective biopolymer-based ink poised to advance the landscape of 3D printing technologies.

11.
Mol Diagn Ther ; 28(4): 425-453, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38775897

ABSTRACT

Cancer is a leading global cause of mortality, which underscores the imperative of early detection for improved patient outcomes. Biorecognition molecules, especially aptamers, have emerged as highly effective tools for early and accurate cancer cell identification. Aptamers, with superior versatility in synthesis and modification, offer enhanced binding specificity and stability compared with conventional antibodies. Hence, this article reviews diagnostic strategies employing aptamer-based biohybrid nano-biosensing technologies, focusing on their utility in detecting cancer biomarkers and abnormal cells. Recent developments include the synthesis of nano-aptamers using diverse nanomaterials, such as metallic nanoparticles, metal oxide nanoparticles, carbon-derived substances, and biohybrid nanostructures. The integration of these nanomaterials with aptamers significantly enhances sensitivity and specificity, promising innovative and efficient approaches for cancer diagnosis. This convergence of nanotechnology with aptamer research holds the potential to revolutionize cancer treatment through rapid, accurate, and non-invasive diagnostic methods.


Subject(s)
Aptamers, Nucleotide , Biomarkers, Tumor , Biosensing Techniques , Early Detection of Cancer , Neoplasms , Humans , Aptamers, Nucleotide/chemistry , Early Detection of Cancer/methods , Neoplasms/diagnosis , Biosensing Techniques/methods , Nanotechnology/methods , Nanostructures/chemistry , Metal Nanoparticles/chemistry , SELEX Aptamer Technique/methods
12.
Int J Biol Macromol ; 265(Pt 2): 130747, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479657

ABSTRACT

Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.


Subject(s)
Nanostructures , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Biotechnology , Drug Carriers , Nanotechnology
13.
Biomacromolecules ; 25(4): 2136-2155, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38448083

ABSTRACT

Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.


Subject(s)
Gelatin , Tissue Engineering , Tissue Scaffolds , Biocompatible Materials , Collagen
14.
Nanoscale Adv ; 6(3): 745-746, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298578

ABSTRACT

Sabu Thomas, Maya John and Aji Mathew introduce the Nanoscale Advances themed issue on Bionanocomposites.

15.
Environ Res ; 250: 118513, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38368918

ABSTRACT

Carbon dots (CDs) are an emerging type of carbon nanomaterial with strong biocompatibility, distinct chemical and physical properties, and low toxicity. CDs may emit fluorescence in the ultraviolet (UV) to near-infrared (NIR) range, which renders them beneficial for biomedical applications. CDs are usually made from carbon precursors and can be synthesized using top-down and bottom-up methods and it can be easily functionalized using different methods. For specific cases of biomedical applications carbon dot functionalization augments the materials' characteristics. Novel functionalization techniques are still being investigated. This review will look at the benefits of functionalization to attain a high yield and various biological applications. Biomedical applications such as photodynamic and photothermal therapy, biosensing, bioimaging, and antiviral and antibacterial properties will be covered in this review. The future applications of green synthesized carbon dots will be determined in part by this review.


Subject(s)
Carbon , Carbon/chemistry , Sustainable Development , Quantum Dots/chemistry , Green Chemistry Technology/methods
16.
Polymers (Basel) ; 16(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38257029

ABSTRACT

Biopolymers have intrinsic drawbacks compared to traditional plastics, such as hydrophilicity, poor thermo-mechanical behaviours, and barrier characteristics. Therefore, biopolymers or their film modifications offer a chance to create packaging materials with specified properties. Cold atmospheric plasma (CAP) or Low temperature plasma (LTP) has a wide range of applications and has recently been used in the food industry as a potent tool for non-thermal food processing. Though its original purpose was to boost polymer surface energy for better adherence and printability, it has since become an effective technique for surface decontamination of food items and food packaging materials. These revolutionary innovative food processing methods enable the balance between the economic constraints and higher quality while ensuring food stability and minimal processing. For CAP to be considered as a viable alternative food processing technology, it must positively affect food quality. Food products may have their desired functional qualities by adjusting the conditions for cold plasma formation. Cold plasma is a non-thermal method that has little effects on the treated materials and is safe for the environment. In this review, we focus on recent cold plasma advances on various food matrices derived from plants and animals with the aim of highlighting potential applications, ongoing research, and market trends.

17.
Mini Rev Med Chem ; 24(1): 26-38, 2024.
Article in English | MEDLINE | ID: mdl-37312447

ABSTRACT

BACKGROUND: This study aimed to elaborate on all the aspects of multivesicular liposomes, including structure, function, topology, etc. Liposomes are a unique drug delivery system, in which both hydrophilic and hydrophobic drug molecules can be incorporated. Particularly, multivesicular liposomes have more advantages than other liposomes because of their unique structure. This study provides an overview of several works already performed by various researchers in this field. Numerous studies have reported on preparing and evaluating multivesicular liposomes for drug delivery applications. This study summarizes the process of formulating multivesicular liposomes and their application in drug delivery systems and provides details about how to resolve the problem of limited solubility and stability of biomolecules, along with controlled drug release kinetics, with the possibility of loading various drugs. There is no doubt that multivesicular liposome opens new avenues to develop novel drug delivery system for achieving the desired functional performances and expanding the applications in the drug delivery area.


Subject(s)
Drug Delivery Systems , Liposomes , Liposomes/chemistry , Solubility , Drug Liberation
18.
Protein Pept Lett ; 30(10): 795-805, 2023.
Article in English | MEDLINE | ID: mdl-37817656

ABSTRACT

BACKGROUND: Brevinin2 HYba5 (Peptide 29) is a novel cationic peptide identified from an endemic frog, Hydrophylax bahuvistara. Staphylococcus aureus and Enterococcus faecalis are troublesome biofilm-forming pathogens associated with nosocomial and community-acquired infections and contribute to the severity of infections associated with implanted devices and chronic wounds. Co-existence of both pathogens in biofilm mode contributes to an increased antibiotic resistance, treatment failure and hence persistent disease burden. Identifying a novel and stable, less toxic compound targeting multispecies biofilm with a lower probability of acquiring resistance in comparison to antibiotics is highly warranted. OBJECTIVE: Evaluate the activity of Brevinin2 HYba5 against S. aureus and E. faecalis mixed biofilm. METHODS: The anti-biofilm activity of peptide 29 was tested by Crystal violet assay, Confocal laser scanning Microscopy (CLSM) and MTT Assay. Cytotoxicity of the peptide was tested in RBC and L929 fibroblast cell line. Biofilm inhibitory activity of the peptide was evaluated at different temperatures, pH, serum and plasma concentrations. The antibiofilm potential of the peptide was tested against polymicrobial biofilm by Fluorescent in situ hybridisation (FISH) and plate counting on HiCromeTM UTI Agar media. RESULTS: The peptide 29 could inhibit biofilm formation of S. aureus and E. faecalis individually as well as in polymicrobial biofilm at 75 µM concentration. The peptide maintained its antibiofilm potential at different temperatures, serum and plasma concentrations. Activity of the peptide was high at acidic and neutral pH but found to get reduced towards alkaline pH. The peptide is nonhemolytic and does not exhibit significant cytotoxicity against the L929 fibroblast cell line (92.80% cell viability). CONCLUSION: The biofilm inhibition property makes peptide 29 a promising candidate for the management of S. aureus and E. faecalis biofilm, especially in catheter-associated devices to prevent the initial colonization and thus can ease the burden of pathogenic biofilm-associated infections.


Subject(s)
Enterococcus faecalis , Staphylococcus aureus , Enterococcus faecalis/physiology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Biofilms , Peptides
19.
Polymers (Basel) ; 15(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37896348

ABSTRACT

Effective insulation of buildings and other industrial objects requires the use of materials and system solutions that ensure maximum uniformity and density of insulation shells. The study focuses on the development of insulation systems based on expanded polyethylene and, in particular, on the development of modified polyethylene with reduced flammability containing a flame-retardant modified montmorillonite clay, which does not hinder gas formation, and silicate nanofillers in layered construction. Active experiments based on mathematical design methods allowed us to establish an analytical relationship between flame-retardant and modifier consumption and extruder pressure and response functions: average density of polyethylene foam and flammability criterion. The flammability criterion was taken as the oxygen index of the modified polyethylene foam. A foaming agent masterbatch was used as the flame retardant. Analytical optimization of mathematical models obtained as a result of active experiments allowed us to determine the optimal flame-retardant consumption, which was 3.7-3.8% of the polymer mass. Optimised systems for average density and oxygen index of flammability of modified polyethylene were obtained. A nomogram for predicting the material properties and selecting the composition, and an algorithm for a computer program for evaluating the properties of modified polyethylene foam as a function of the values of various factors, were developed. Taking into account the possible expansion of the scope of application of rolled polyethylene foam and seamless insulation shells based on it, possible solutions for insulation systems were studied using the program THERM, and a combined insulation system was adopted.

20.
Environ Res ; 239(Pt 1): 117366, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37827368

ABSTRACT

Natural carbon dots (NCQDs) are expediently significant in the photo-, nano- and biomedical spheres owing to their facile synthesis, optical and physicochemical attributes. In the present study, three NCQDs are prepared and optimized from Withania somnifera (ASH) by one-step hydrothermal (bottom-up) method: HASHP (without dopant), nitrogen doped HASHNH3 (surface passivation using ammonia) and HASHEDA (surface passivation with ethylenediamine). The HR-TEM images reveal that HASHP, HASNH3, HASHEDA are spherically shaped with 2.5 ± 0.5 nm, 4 ± 1 nm and 5 ± 2 nm particle size, respectively, whereas FTIR confirms the aqueous solubility and nitrogen doping. The XRD patterns ensure that the NCQDs are amorphous and graphitic in nature. Comparatively, HASHNH3 (32.5%) and HASHEDA (27.6%) portray better fluorescence quantum yield than HASHP (5.6%). The increase in quantum yield for the doped NCQDs can be attributed to the surface passivation using ammonia and ethylenediamine. Surface passivation plays a crucial role in enhancing the fluorescence properties of quantum dots. The introduction of nitrogen through ammonia and ethylenediamine provides additional electronic states, possibly reducing non-radiative recombination sites and hence boosting the QY. In addition, an antiviral study unveils the striking potential of surface passivated NCQDs to curb Covid-19 crises with around 85% inhibition of SARS-CoV pseudoviron cells, which is better in comparison to the non-doped NCQDs. Hence, to understand the paramount efficacy of these NCQDs, a hypothesis on their possible mechanism of action against Covid-19 is discussed.


Subject(s)
COVID-19 , Quantum Dots , Withania , SARS-CoV-2 , Carbon , Ammonia , Ethylenediamines , Nitrogen , Antiviral Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL