Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7090, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402763

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipocyte differentiation, and mutations that interfere with its function cause lipodystrophy. PPARγ is a highly modular protein, and structural studies indicate that PPARγ domains engage in several intra- and inter-molecular interactions. How these interactions modulate PPARγ's ability to activate target genes in a cellular context is currently poorly understood. Here we take advantage of two previously uncharacterized lipodystrophy mutations, R212Q and E379K, that are predicted to interfere with the interaction of the hinge of PPARγ with DNA and with the interaction of PPARγ ligand binding domain (LBD) with the DNA-binding domain (DBD) of the retinoid X receptor, respectively. Using biochemical and genome-wide approaches we show that these mutations impair PPARγ function on an overlapping subset of target enhancers. The hinge region-DNA interaction appears mostly important for binding and remodelling of target enhancers in inaccessible chromatin, whereas the PPARγ-LBD:RXR-DBD interface stabilizes the PPARγ:RXR:DNA ternary complex. Our data demonstrate how in-depth analyses of lipodystrophy mutants can unravel molecular mechanisms of PPARγ function.


Subject(s)
Lipodystrophy , PPAR gamma , Humans , PPAR gamma/genetics , PPAR gamma/metabolism , Adipocytes/metabolism , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Lipodystrophy/metabolism , Regulatory Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL