Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
Chem Commun (Camb) ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946539

ABSTRACT

Designing electrocatalysts for seawater splitting remains challenging. A Ru-Co alloy supported by an N-doped carbon substrate catalyst has been designed using etching and a low-temperature treatment method. Studies show that the superior performance of this catalyst is related to the hollow-structured N-doped carbon frame and surface reconstruction of the Ru-Co alloy.

2.
PhytoKeys ; 243: 185-198, 2024.
Article in English | MEDLINE | ID: mdl-38961996

ABSTRACT

Chrysospleniumguangxiense H.G.Ye & Gui C.Zhang was first described as a new species in 1994 but later synonymized in the Flora of China treatment with C.glossophyllum H.Hara. Plastid genomes and nrDNA sequences were used to infer the phylogenetic relationships of selected taxa in Chrysosplenium. Our phylogenetic analyses revealed that C.guangxiense belongs to sect. Alternifolia, is closely related to Chrysospleniumhydrocotylifolium H.Lév. & Vaniot but distant from C.glossophyllum. Morphologically, C.guangxiense could be easily distinguished from C.glossophyllum by having robust rhizomes, basal leaves with a long cuneate base and fewer teeth in the margin, curled sepal margins, and red, larger seeds. It could also be easily distinguished from C.hydrocotylifolium by possessing long elliptic leaves and a long cuneate leaf base. Along with the phylogenetic studies, the complete plastid genome of C.guangxiense was also reported. The plastid genome was 154,004 bp in length and comprised two inverted repeats (IRs) of 28,120 bp, separated by a large single-copy of 80,646 bp and a small single-copy of 17,118 bp. A total of 111 functional genes were discovered, comprising 78 protein-coding genes, 29 tRNA genes, and four rRNA genes. Based on assessment of morphological and molecular data Chrysospleniumguangxiense H.G.Ye & Gui C.Zhang is resurrected from C.glossophyllum H.Hara at species level. A global conservation assessment classifies C.guangxiense as Vulnerable (VU).

3.
Plant Physiol Biochem ; 214: 108875, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38972243

ABSTRACT

Potassium (K) and magnesium (Mg) play analogous roles in regulating plant photosynthesis and carbon and nitrogen (C-N) metabolism. Based on this consensus, we hypothesize that appropriate Mg supplementation may alleviate growth inhibition under low K stress. We monitored morphological, physiological, and molecular changes in G935 apple plants under different K (0.1 and 6 mmol L-1) and Mg supply (3 and 6 mmol L-1) conditions. Low K stress caused changes in root and leaf structure, inhibited photosynthesis, and limited the root growth of the apple rootstock. Further study on Mg supplementation showed that it could promote the uptake of K+ and NO3- by upregulating the expression of K+ transporter proteins such as Arabidopsis K+ transporter 1 (MdAKT1), high-affinity K+ transporter 1 (MdHKT1), and potassium transporter 5 (MdPT5) and nitrate transporters such as nitrate transporter 1.1/1.2/2.1/2.4 (MdNRT 1.1/1.2/2.1/2.4). Mg promoted the translocation of 15N from roots to leaves and enhanced photosynthetic N utilization efficiency (PNUE) by increasing the proportion of photosynthetic N and alleviating photosynthetic restrictions. Furthermore, Mg supplementation improved the synthesis of photosynthates by enhancing the activities of sugar-metabolizing enzymes (Rubisco, SS, SPS, S6PDH). Mg also facilitated the transport of sucrose and sorbitol from leaves to roots by upregulating the expression of sucrose transporter 1.1/1.2/4.1/4.2 (MdSUT 1.1/1.2/4.1/4.2) and sorbitol transporter 1.1/1.2 (MdSOT 1.1/1.2). Overall, Mg effectively alleviated growth inhibition in apple rootstock plants under low K stress by facilitating the uptake of N and K uptake, optimizing nitrogen partitioning, enhancing nitrogen use efficiency (NUE) and PNUE, and promoting the photosynthate synthesis and translocation.

4.
Nat Hum Behav ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886532

ABSTRACT

Mental well-being relates to multitudinous lifestyle behaviours and morbidities and underpins healthy aging. Thus far, causal evidence on whether and in what pattern mental well-being impacts healthy aging and the underlying mediating pathways is unknown. Applying genetic instruments of the well-being spectrum and its four dimensions including life satisfaction, positive affect, neuroticism and depressive symptoms (n = 80,852 to 2,370,390), we performed two-sample Mendelian randomization analyses to estimate the causal effect of mental well-being on the genetically independent phenotype of aging (aging-GIP), a robust and representative aging phenotype, and its components including resilience, self-rated health, healthspan, parental lifespan and longevity (n = 36,745 to 1,012,240). Analyses were adjusted for income, education and occupation. All the data were from the largest available genome-wide association studies in populations of European descent. Better mental well-being spectrum (each one Z-score higher) was causally associated with a higher aging-GIP (ß [95% confidence interval (CI)] in different models ranging from 1.00 [0.82-1.18] to 1.07 [0.91-1.24] standard deviations (s.d.)) independent of socioeconomic indicators. Similar association patterns were seen for resilience (ß [95% CI] ranging from 0.97 [0.82-1.12] to 1.04 [0.91-1.17] s.d.), self-rated health (0.61 [0.43-0.79] to 0.76 [0.59-0.93] points), healthspan (odds ratio [95% CI] ranging from 1.23 [1.02-1.48] to 1.35 [1.11-1.65]) and parental lifespan (1.77 [0.010-3.54] to 2.95 [1.13-4.76] years). Two-step Mendelian randomization mediation analyses identified 33 out of 106 candidates as mediators between the well-being spectrum and the aging-GIP: mainly lifestyles (for example, TV watching and smoking), behaviours (for example, medication use) and diseases (for example, heart failure, attention-deficit hyperactivity disorder, stroke, coronary atherosclerosis and ischaemic heart disease), each exhibiting a mediation proportion of >5%. These findings underscore the importance of mental well-being in promoting healthy aging and inform preventive targets for bridging aging disparities attributable to suboptimal mental health.

5.
J Adv Res ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825317

ABSTRACT

INTRODUCTION: Rhizoctonia solani Kühn is a pathogen causing rice sheath blight (ShB). Ammonium transporter 1 (AMT1) promotes resistance of rice to ShB by activating ethylene signaling. However, how AMT1 activates ethylene signaling remains unclear. OBJECTIVE: In this study, the indeterminate domain 10 (IDD10)-NAC079 interaction model was used to investigate whether ethylene signaling is modulated downstream of ammonium signaling and modulates ammonium-mediated ShB resistance. METHODS: RT-qPCR assay was used to identify the relative expression levels of nitrogen and ethylene related genes. Yeast two-hybrid assays, Bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were conducted to verify the IDD10-NAC079-calcineurin B-like interacting protein kinase 31 (CIPK31) transcriptional complex. Yeast one-hybrid assay, Chromatin immunoprecipitation (ChIP) assay, and Electrophoretic mobility shift assay (EMSA) were used to verify whether ETR2 was activated by IDD10 and NAC079. Ethylene quantification assay was used to verify ethylene content in IDD10 transgenic plants. Genetic analysis is used to detect the response of IDD10, NAC079 and CIPK31 to ShB infestation. RESULTS: IDD10-NAC079 forms a transcription complex that activates ETR2 to inhibit the ethylene signaling pathway to negatively regulating ShB resistance. CIPK31 interacts and phosphorylates NAC079 to enhance its transcriptional activation activity. In addition, AMT1-mediated ammonium absorption and subsequent N assimilation inhibit the expression of IDD10 and CIPK31 to activate the ethylene signaling pathway, which positively regulates ShB resistance. CONCLUSION: The study identified the link between ammonium and ethylene signaling and improved the understanding of the rice resistance mechanism.

6.
Transl Psychiatry ; 14(1): 205, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769320

ABSTRACT

Growing evidence suggests an association between osteocalcin (OCN), a peptide derived from bone and involved in regulating glucose and lipid metabolism, and the risk of Alzheimer's disease (AD). However, the causality of these associations and the underlying mechanisms remain uncertain. We utilized a Mendelian randomization (MR) approach to investigate the causal effects of blood OCN levels on AD and to assess the potential involvement of glucose and lipid metabolism. Independent instrumental variables strongly associated (P < 5E-08) with blood OCN levels were obtained from three independent genome-wide association studies (GWAS) on the human blood proteome (N = 3301 to 35,892). Two distinct summary statistics datasets on AD from the International Genomics of Alzheimer's Project (IGAP, N = 63,926) and a recent study including familial-proxy AD patients (FPAD, N = 472,868) were used. Summary-level data for fasting glucose (FG), 2h-glucose post-challenge, fasting insulin, HbA1c, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol (TC), and triglycerides were incorporated to evaluate the potential role of glucose and lipid metabolism in mediating the impact of OCN on AD risk. Our findings consistently demonstrate a significantly negative correlation between genetically determined blood OCN levels and the risk of AD (IGAP: odds ratio [OR, 95%CI] = 0.83[0.72-0.96], P = 0.013; FPAD: OR = 0.81 [0.70-0.93], P = 0.002). Similar estimates with the same trend direction were obtained using other statistical approaches. Furthermore, employing multivariable MR analysis, we found that the causal relationship between OCN levels and AD was disappeared after adjustment of FG and TC (IGAP: OR = 0.97[0.80-1.17], P = 0.753; FPAD: OR = 0.98 [0.84-1.15], P = 0.831). There were no apparent instances of horizontal pleiotropy, and leave-one-out analysis showed good stability of the estimates. Our study provides evidence supporting a protective effect of blood OCN levels on AD, which is primarily mediated through regulating FG and TC levels. Further studies are warranted to elucidate the underlying physio-pathological mechanisms.


Subject(s)
Alzheimer Disease , Energy Metabolism , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteocalcin , Humans , Alzheimer Disease/blood , Alzheimer Disease/genetics , Osteocalcin/blood , Energy Metabolism/genetics , Blood Glucose/metabolism , Polymorphism, Single Nucleotide , Male , Female , Triglycerides/blood , Insulin/blood
7.
iScience ; 27(4): 109297, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38715943

ABSTRACT

The One Health (OH) approach is used to control/prevent zoonotic events. However, there is a lack of tools for systematically assessing OH practices. Here, we applied the Global OH Index (GOHI) to evaluate the global OH performance for zoonoses (GOHI-Zoonoses). The fuzzy analytic hierarchy process algorithm and fuzzy comparison matrix were used to calculate the weights and scores of five key indicators, 16 subindicators, and 31 datasets for 160 countries and territories worldwide. The distribution of GOHI-Zoonoses scores varies significantly across countries and regions, reflecting the strengths and weaknesses in controlling or responding to zoonotic threats. Correlation analyses revealed that the GOHI-Zoonoses score was associated with economic, sociodemographic, environmental, climatic, and zoological factors. Additionally, the Human Development Index had a positive effect on the score. This study provides an evidence-based reference and guidance for global, regional, and country-level efforts to optimize the health of people, animals, and the environment.

8.
Parasit Vectors ; 17(1): 205, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715092

ABSTRACT

BACKGROUND: Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections. However, the role of these molecules in A. cantonensis infection has not been fully clarified. METHODS: In total, 32 BALB/c mice were randomly divided into four groups, and the infection groups were inoculated with 40 A. cantonensis larvae by gavage. Hematoxylin and eosin (H&E) staining and RNA library construction were performed on brain tissues from infected mice. Differential expression of long noncoding RNAs (lncRNAs) and mRNAs in brain tissues was identified by high-throughput sequencing. The pathways and functions of the differentially expressed lncRNAs were determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The functions of the differentially expressed lncRNAs were further characterized by lncRNA‒microRNA (miRNA) target interactions. The potential host lncRNAs involved in larval infection of the brain were validated by quantitative real-time polymerase chain reaction (qRT‒PCR). RESULTS: The pathological results showed that the degree of brain tissue damage increased with the duration of infection. The transcriptome results showed that 859 lncRNAs and 1895 mRNAs were differentially expressed compared with those in the control group, and several lncRNAs were highly expressed in the middle-late stages of mouse infection. GO and KEGG pathway analyses revealed that the differentially expressed target genes were enriched mainly in immune system processes and inflammatory response, among others, and several potential regulatory networks were constructed. CONCLUSIONS: This study revealed the expression profiles of lncRNAs in the brains of mice after infection with A. cantonensis. The lncRNAs H19, F630028O10Rik, Lockd, AI662270, AU020206, and Mexis were shown to play important roles in the infection of mice with A. cantonensis infection.


Subject(s)
Angiostrongylus cantonensis , Brain , Mice, Inbred BALB C , RNA, Long Noncoding , Strongylida Infections , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Angiostrongylus cantonensis/genetics , Strongylida Infections/parasitology , Strongylida Infections/genetics , Brain/parasitology , Brain/metabolism , Brain/pathology , Mice , Larva/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Small ; 20(27): e2310837, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38644345

ABSTRACT

Gallium Nitride (GaN), as the representative of wide bandgap semiconductors, has great prospects in accomplishing rapid charge delivery under high-temperature environments thanks to excellent structural stability and electron mobility. However, there is still a gap in wafer-scale GaN single-crystal integrated electrodes applied in the energy storage field. Herein, Si-doped GaN nanochannel with gallium oxynitride (GaON) layer on a centimeter scale (denoted by GaN NC) is reported. The Si atoms modulate electronic redistribution to improve conductivity and drive nanochannel formation. Apart from that, the distinctive nanochannel configuration with a GaON layer provides adequate active sites and extraordinary structural stability. The GaN-based supercapacitors are assembled and deliver outstanding charge storage capabilities at 140 °C. Surprisingly, 90% retention is maintained after 50 000 cycles. This study opens the pathway toward wafer-scale GaN single-crystal integrated electrodes with self-powered characteristics that are compatible with various (opto)-electronic devices.

10.
Small ; : e2401078, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593301

ABSTRACT

Currently, the only thermoelectric (TE) materials commercially available at room temperature are those based on bismuth telluride. However, their widespread application is limited due to their inferior thermoelectric and mechanical properties. In this study, a strategy of growing a rigid second phase of MoSe2 is employed, in situ within the matrix phase to achieve n-type bismuth telluride-based materials with exceptional mechanical and thermoelectric properties. The in situ grown second phase contributes to both the electronic and lattice thermal conductivities. This is primarily attributed to the strong energy filtering effect, as the second phase forms a semi-common lattice interfacial structure with the matrix phase during growth. Furthermore, for composites containing 2 wt% MoSe2, a maximum zT value of 1.24 at 373 K can be achieved. On this basis, 8-pair TE module is fabricated and 1-pair TE module is optimized using a homemade p-type material. The optimized 1-pair TE module generates a maximum output power of 13.6 µW, which is twice that of the 8-pair TE module and four times more than the 8-pair TE module fabricated by commercial material. This work facilitates the development of the TE module by presenting a novel approach to obtaining bismuth telluride-based thermoelectric materials with superior thermoelectric and mechanical properties.

11.
ACS Nano ; 18(16): 10840-10849, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38616401

ABSTRACT

External electric field has the potential to influence metabolic processes such as biological hydrogen production in microorganisms. Based on this concept, we designed and constructed an electroactive hybrid system for microbial biohydrogen production under an electric field comprised of polydopamine (PDA)-modified Escherichia coli (E. coli) and Ni foam (NF). In this system, electrons generated from NF directly migrate into E. coli cells to promote highly efficient biocatalytic hydrogen production. Compared to that generated in the absence of electric field stimulation, biohydrogen production by the PDA-modified E. coli-based system is significantly enhanced. This investigation has demonstrated the mechanism for electron transfer in a biohybrid system and gives insight into precise basis for the enhancement of hydrogen production by using the multifield coupling technology.


Subject(s)
Electrons , Escherichia coli , Hydrogen , Polymers , Escherichia coli/metabolism , Hydrogen/metabolism , Hydrogen/chemistry , Polymers/chemistry , Polymers/metabolism , Indoles/chemistry , Indoles/metabolism , Nickel/chemistry , Nickel/metabolism , Electron Transport
12.
China CDC Wkly ; 6(13): 267-271, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38633199

ABSTRACT

Introduction: This study aims to analyze the potential impact of the meteorological environment and air pollutants on road traffic fatalities. Methods: Road traffic fatality data in Shandong Province from 2012 to 2021 were obtained from the Population Death Information Registration Management System. Meteorological and air pollutant data for the same period were collected from the U.S. National Oceanic and Atmospheric Administration and the Ecological Environment Monitoring Center of Shandong Province, China. Pearson's correlation and ridge regression were used to analyze the impact of the meteorological environment and air pollutants on road traffic fatalities. Results: From 2012 to 2021, there were 163,863 road traffic fatality cases. The results of the ridge regression analysis showed that the daily average temperature was negatively correlated with total fatalities and passengers and positively correlated with pedestrians, nonmotorized drivers, and motorized drivers. The daily minimum temperature was negatively correlated with total fatalities and positively correlated with motorized drivers. The daily maximum temperature was positively correlated with both pedestrian and nonmotorized drivers. The daily accumulated precipitation was negatively correlated with pedestrians. Sunshine duration was positively correlated with both nonmotorized and motorized drivers. Inhalable particulate matter (PM10) and nitrogen dioxide (NO2) were positively correlated with total fatalities, pedestrians, and nonmotorized drivers. Sulfur dioxide (SO2) was positively correlated with total fatalities but negatively correlated with nonmotorized drivers, passengers, and motorized drivers. Conclusions: Atmospheric factors associated with the occurrence of road traffic fatalities include air temperature, daily accumulated precipitation, sunshine duration, and air pollutants such as PM10, NO2, and SO2.

13.
Nanoscale ; 16(19): 9536-9544, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38659413

ABSTRACT

Designing advanced electrode materials that can be reliably cycled at high temperatures and used for assembling advanced energy storage devices remain a major challenge. As a representative of novel wide bandgap semiconductors, silicon carbide (SiC) single crystals have broad prospects in high-temperature energy storage due to their excellent characteristics such as low thermal expansion coefficient, high temperature radiation resistance and stable chemical properties. In this work, an N-type SiC single-crystal material with a high-density porous structure was successfully designed and prepared by using an improved electrochemical anodic oxidation strategy. Besides, the N-type SiC single crystals were used in electrochemical energy storage as an integrated electrode material, exhibiting superior electrochemical performance. In addition, the high-temperature supercapacitor device assembled with ionic liquids has a wide operating temperature range and maintains a capacity of 88.24% after 5000 cycles at 150 °C. The reasons for its high energy storage performance are discussed through electrochemical tests and first-principles calculation methods. This study proves that the application of SiC single crystals in supercapacitor devices has great potential in the field of high-temperature energy storage, providing a reference for the further development of novel semiconductors in the field of energy storage and optoelectronic devices.

14.
Aging (Albany NY) ; 16(6): 5567-5580, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38517371

ABSTRACT

BACKGROUND: CR6-interacting factor 1 (CRIF1), a multifunctional protein that affects mitochondrial function and cell senescence, plays a regulatory role in heart-related diseases. However, whether CRIF1 participates in myocardial senescence by regulating mitochondrial function remains unclear. METHODS: Doxorubicin (DOX)-induced C57BL/6 mice to construct mouse myocardial senescence model, and the myocardial function indicators including lactate dehydrogenase (LDH) and Creatine kinase isoform MB (CK-MB) were assessed. The expression of CRIF1 was detected by western blot. Myocardial pathological changes were examined by transthoracic echocardiography and haematoxylin and eosin (H&E) staining. Cell senescence was detected by SA-ß-gal staining. JC-1 staining was used to detect mitochondrial membrane potential. Biochemical kits were used to examine oxidative stress-related factors. Additionally, AC16 cardiomyocytes were treated with DOX to mimic the cellular senescence model in vitro. Cell activity was detected by cell counting kit-8 (CCK-8) assay. Co-immunoprecipitation (CO-IP) was used to verify the relationship between CRIF1 and peroxidasin (PXDN). RESULTS: The CRIF1 expression was significantly decreased in DOX-induced senescent mice and AC16 cells. Overexpression of CRIF1 significantly ameliorated DOX-induced myocardial dysfunction and myocardial senescence. Additionally, CRIF1 overexpression attenuated DOX-induced oxidative stress and myocardial mitochondrial dysfunction. Consistently, CRIF1 overexpression also inhibited DOX-induced oxidative stress and senescence in AC16 cells. Moreover, CRIF1 was verified to bind to PXDN and inhibited PXDN expression. The inhibitory effects of CRIF1 overexpression on DOX-induced oxidative stress and senescence in AC16 cells were partly abolished by PXDN expression. CONCLUSIONS: CRIF1 plays a protective role against DOX-caused mitochondrial dysfunction and myocardial senescence partly through downregulating PXDN.


Subject(s)
Deoxyribonucleosides , Doxorubicin , Mitochondrial Diseases , Purine Nucleosides , Mice , Animals , Mice, Inbred C57BL , Doxorubicin/toxicity , Myocardium/metabolism , Oxidative Stress , Myocytes, Cardiac/metabolism , Mitochondrial Diseases/metabolism , Apoptosis
15.
Mikrochim Acta ; 191(4): 209, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38499840

ABSTRACT

A novel colorimetric platform was designed for the determination of S. aureus by utilizing a dual-recognition strategy, where wheat germ agglutinin (WGA)-functionalized magnetic beads were served as separation elements to capture and enrich S. aureus efficiently from the matrix. Horseradish peroxidase (HRP) labeled chicken anti-protein A IgY (HRP-IgY) was used to label the captured S. aureus. A chicken IgY was introduced as a signal tracer to bind with staphylococcal protein A (SPA) on the surface of S. aureus, which can circumvent the interference from protein G-producing Streptococcus. Subsequently, the colorimetric signal was achieved by an HRP-catalyzed reaction, which was amplified by HRP-IgY bound by approximately 80,000 SPA molecules on one S. aureus. The entire detection process could be accomplished within 90 min. Under optimal conditions, the linear response of different S. aureus concentrations ranged from 7.8 × 102 to 2.0 × 105 CFU/mL and the limit of detection reached down to 3.9 × 102 CFU/mL. Some common non-target bacteria yielded negative results, indicating the excellent specificity of the method. The developed strategy was successfully applied to the determination of S. aureus in various types of samples with satisfactory recoveries. Therefore, the novel dual-recognition strategy possessed the advantages of high sensitivity, specificity, and low cost and exhibited considerable potential as a promising tool to defend public health.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Wheat Germ Agglutinins , Colorimetry/methods , Immunoglobulins , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Horseradish Peroxidase/metabolism
16.
Hortic Res ; 11(1): uhad253, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38486813

ABSTRACT

Nitrogen (N) and potassium (K) are two important mineral nutrients in regulating leaf photosynthesis. However, the influence of N and K interaction on photosynthesis is still not fully understood. Using a hydroponics approach, we studied the effects of different N and K conditions on the physiological characteristics, N allocation and photosynthetic capacity of apple rootstock M9T337. The results showed that high N and low K conditions significantly reduced K content in roots and leaves, resulting in N/K imbalance, and allocated more N in leaves to non-photosynthetic N. Low K conditions increased biochemical limitation (BL), mesophyll limitation (MCL), and stomatal limitation (SL). By setting different N supplies, lowering N levels under low K conditions increased the proportion of water-soluble protein N (Nw) and sodium dodecyl sulfate-soluble proteins (Ns) by balancing N/K and increased the proportion of carboxylation N and electron transfer N. This increased the maximum carboxylation rate and mesophyll conductance, which reduced MCL and BL and alleviated the low K limitation of photosynthesis in apple rootstocks. In general, our results provide new insights into the regulation of photosynthetic capacity by N/K balance, which is conducive to the coordinated supply of N and K nutrients.

17.
J Hum Hypertens ; 38(4): 329-335, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361027

ABSTRACT

Observational studies have indicated that high blood pressure (BP) may be a risk factor to frailty. However, the causal association between BP and frailty remains not well determined. The purpose of this bi-directional two-sample Mendelian randomization (MR) study was to investigate the causal relationship between BP and frailty. Independent single nucleotide polymorphisms (SNPs) strongly (P < 5E-08) associated with systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) were selected as instrumental variables. Two different published genome-wide association studies (GWAS) on BP from the CHARGE (n = 810,865) and ICBP (n = 757,601) consortia were included. Summary-level data on frailty index (FI) were obtained from the latest GWAS based on UK Biobank and Swedish TwinGene cohorts (n = 175,226). Inverse variance weighted (IVW) approach with other sensitivity analyses were used to calculate the causal estimate. Using the CHARGE dataset, genetic predisposition to increased SBP (ß = 0.135, 95% CI = 0.093 to 0.176, P = 1.73E-10), DBP (ß = 0.145, 95% CI = 0.104 to 0.186, P = 3.14E-12), and PP (ß = 0.114, 95% CI = 0.070 to 0.157, p = 2.87E-07) contributed to a higher FI, which was validated in the ICBP dataset. There was no significant causal effect of FI on SBP, DBP, and PP. Similar results were obtained from different MR methods, indicating good stability. There was potential heterogeneity detected by Cochran's Q test, but no horizontal pleiotropy was observed in MR-Egger intercept test (P > 0.05). These findings evinced that higher BP and PP were causally associated with an increased risk of frailty, suggesting that controlling hypertension could reduce the risk of frailty.


Subject(s)
Frailty , Hypertension , Humans , Blood Pressure/genetics , Frailty/diagnosis , Frailty/epidemiology , Frailty/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Hypertension/diagnosis , Hypertension/epidemiology , Hypertension/genetics
18.
Biosci Trends ; 18(1): 1-10, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38403739

ABSTRACT

Diagnosis-related groups (DRG) based hospital payment systems are gradually becoming the main mechanism for reimbursement of acute inpatient care. We reviewed the existing literature to ascertain the global use of DRG-based hospital payment systems, compared the similarities and differences of original DRG versions in ten countries, and used ischemic stroke as an example to ascertain the design and implementation strategies for various DRG systems. The current challenges with and direction for the development of DRG-based hospital payment systems are also analyzed. We found that the DRG systems vary greatly in countries in terms of their purpose, grouping, coding, and payment mechanisms although based on the same classification concept and that they have tended to develop differently in countries with different income classifications. In high-income countries, DRG-based hospital payment systems have gradually begun to weaken as a mainstream payment method, while in middle-income countries DRG-based hospital payment systems have attracted increasing attention and increased use. The example of ischemic stroke provides suggestions for mutual promotion of DRG-based hospital payment systems and disease management. How to determine the level of DRG payment incentives and improve system flexibility, balance payment goals and disease management goals, and integrate development with other payment methods are areas for future research on DRG-based hospital payment systems.


Subject(s)
Ischemic Stroke , Humans , Hospitals , Diagnosis-Related Groups
19.
Environ Sci Technol ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319710

ABSTRACT

The NO3•-driven nighttime aging of brown carbon (BrC) is known to greatly impact its atmospheric radiative forcing. However, the impact of oxidation by NO3• on the optical properties of BrC in atmospheric waters as well as the associated reaction mechanism remain unclear. In this work, we found that the optical variation of BrC proxies under environmentally relevant NO3• exposure depends strongly on their sources, with enhanced light absorptivity for biomass-burning BrC but bleaching for urban aerosols and humic substances. High-resolution mass spectrometry using FT-ICR MS shows that oxidation by NO3• leads to the formation of light-absorbing species (e.g., nitrated organics) for biomass-burning BrC while destroying electron donors (e.g., phenols) within charge transfer complexes in urban aerosols and humic substances, as evidenced by transient absorption spectroscopy and NaBH4 reduction experiments as well. Moreover, we found that the measured rate constants between NO3• with real BrCs (k = (1.8 ± 0.6) × 107 MC-1s-1, expressed as moles of carbon) are much higher than those of individual model organic carbon (OC), suggesting the reaction with OCs may be a previously ill-quantified important sink of NO3• in atmospheric waters. This work provides insights into the kinetics and molecular transformation of BrC during the oxidation by NO3•, facilitating further evaluation of BrC's climatic effects and atmospheric NO3• levels.

20.
ACS Appl Mater Interfaces ; 16(6): 7364-7373, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38303137

ABSTRACT

Catalysis has played a decisive role in the development of unique chemical reactions to produce important chemicals. However, conventional stepwise synthetic routes that rely on individual catalysts to promote each step often suffer from ponderous processes for the isolation of intermediates that result in massive material losses and large economic expenditures. In addition, traditional powder forms of these catalysts suffer from poor processability and recoverability. Herein, we designed and prepared a hierarchical metal-organic framework (MOF) composite monolithic catalyst IL-Au@UiO-66-NH2/CMC that contains integrated acid (Zr4+), base (ionic liquid (IL)), and metal sites (Au nanoparticles (NPs)) to promote the one-pot preparation of cyclic carbonates from styrene derivatives and CO2. Highly dispersed Au NPs, IL 1-aminoethyl-3-methylimidazolium bromide ([C2NH2 MIM] [Br]), and MOF-positioned Lewis acid sites within this composite aerogel are separately responsible for catalyzing selective epoxidation of the styrene derivatives and the subsequent cycloaddition reaction of CO2 with intermediate styrene oxides. Importantly, inclusion of the imidazolium-based IL effectively modulates the size and chemical microenvironment of the Au NPs via electrostatic protection, leading to catalyst stability and its selective oxidation of styrene. Benefiting from the rapid mass transfer and high exposure of active sites within the pore-rich hierarchical nanostructure, IL-Au@UiO-66-NH2/CMC promotes high conversion (90.5%) of the styrene and selectivity (80.5%) for styrene carbonate (SC) formation in the one-pot process, a performance level that far exceeds those of related catalysts containing only Au NPs or IL (the selectivity of SC < 42%). Furthermore, the composite aerogel catalyst can be readily separated and recycled at least five times without a remarkable loss of activity and selectivity. The controllable integration of various active components in the hierarchical MOF composite aerogel herein should serve as the foundation for the design of multifunctional monolithic catalysts for other valuable tandem processes.

SELECTION OF CITATIONS
SEARCH DETAIL