Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8445, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600257

ABSTRACT

Based on the macroscopic structure control theory, The slate with a significant bedding plane is a composite rock mass composed of rock blocks containing microscopic defects, joint surface closure elements, and shear deformation elements. Considering the coupling damage effect of water erosion and triaxial compressive load on bedding structure plane, the transversely isotropic damage constitutive model of slate under triaxial compressive load is derived with the dip angle of bedding and confining pressure as the variable. Firstly, based on the statistical theory of continuous damage mechanics and the maximum tensile strain criterion, the transversely isotropic deformation constitutive model of rock block with micro-defects is given; Secondly, based on the phenomenological theory of closed deformation and shear-slip deformation mechanism of layered structural plane under the coupling action of water erosion and triaxial compression load, the calculation formula of axial deformation of layered structural plane under the coupling action is given; Finally, to verify the accuracy of the established constitutive model, triaxial compression tests are carried out to study the influence of dip angle and confining pressure on the macroscopic mechanical properties and mechanism of slate. The results show that: the established triaxial compression damage constitutive model of bedding slate can accurately describe the stress-strain relationship of bedding slate after water environment erosion. With the increase of bedding dip angle, the strength and deformation capacity of the bedding slate first decreases and then increases, showing a U-shaped distribution as a whole. There are three main types of failure: tension shear composite failure, shear slip failure, and splitting tension failure.

2.
Sci Rep ; 14(1): 9246, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649761

ABSTRACT

In this study, a new type of multi-arch tunnel construction method is proposed. This effort is undertaken due to the many disadvantages of the traditional multi-arch tunnel construction method. Furthermore, this method omits the construction of a middle pilot tunnel, and it has the advantages of safety, high efficiency, and being economical. When using the method of continuous arch tunneling without a middle pilot tunnel, the blasting of the first tunnel and the following tunnel has a greater impact on the surrounding rock damage, as well as on the supporting structure of the same cross-section. Therefore, this study uses LS-DYNA finite element software to construct a three-dimensional numerical model. In addition, the perimeter rock damage law and mechanical response characteristics of the supporting structure in the same cross-section of the first tunnel, as well as the following tunnel after blasting without a middle pilot tunnel, are analyzed. At the same time, the results of the study are based on optimizing the blasting program, and these are then applied to the field. Through the results, it is found that, after blasting a continuous arch tunnel without a medial pilot tunnel, the surrounding rock damage in the arch cross-region of the double-arch tunnel (where the arch top and the arch shoulder are more significant) and the effective stress of the supporting structure exceed the strength design value. In addition, the maximum adequate pressure is distributed in the medial diaphragm wall. With the optimized blasting scheme, the range of the peripheral rock damage is reduced by a maximum of 67%, and the effective stress in the supporting structure is reduced by 25.9-64.8%. The research results are of great significance in terms of improving construction safety, economic efficiency, and project quality, as well as in promoting the research and development of new work methods for double-arch tunnels.

3.
Sci Rep ; 14(1): 4917, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418928

ABSTRACT

In the process of drilling and blasting construction of large-cross-section tunnels, the layout of wedge-shaped cutting holes has a great influence on the effect of blasting. In this study, theoretical analysis and numerical simulation were used to assess the effect of different forms of cutting hole placement on blasting effectiveness. First, the fissure-inducing angle was proposed, a three-dimensional model of wedge-shaped cutting considering the effect of shear-tensile resistance was established, and theoretical analyses of cutting holes with different cutting angles and fissure-inducing angles were carried out. Second, the parameters of the Riedel-Hiermaier-Thoma model were determined based on the experimental data, and verified. Third, three-dimensional numerical models were established, and analyze the influence of different forms of hole deployment on the blasting effect from the perspective of stress wave propagation and dynamic damage to the surrounding rock. Finally, based on the theoretical analysis and numerical simulation results, the wedge-shaped hollowing holes were re-designed, and 20 tunnel blasting tests were carried out using this deployment method for large-section tunnel blasting, which verified the feasibility of this deployment method. The results of the study show that for level III surrounding rock, the angle of wedge-shaped cutting holes should meet 68° ≤ θ ≤ 70° and 70° ≤ ß ≤ 72°. This study provides a kind of refined and efficient blasting for the drilling and blasting excavation process of large section tunnels.

4.
Sci Rep ; 13(1): 15271, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37709907

ABSTRACT

In the course of underground engineering, layered slate is often encountered. Understanding the mechanical characteristics of layered slate is a prerequisite for engineering construction and disaster prevention and mitigation. As a result, at the beginning of a project, a large number of indoor tests are required, which are time-consuming and laborious. In addition, the natural joint angle of the layered slate is random, so it is extremely difficult to establish a database of the mechanical characteristics of layered slate. Hence, it is necessary to find a simple, feasible, and high-precision method to determine the Holmquist-Johnson-Cook (HJC) constitutive model parameters for naturally jointed layered slate with different dip angles. This study first determines the HJC constitutive model parameters of layered slate with five specific joint dip angles (0°, 30°, 45°, 60°, and 90°) through static tests and the split Hopkinson pressure bar (SHPB) test. Furthermore, by employing sensitivity analysis methods, the influence of key parameters of the HJC constitutive model on the dynamic peak stress of slate is determined. Among them, parameters A and B have the most significant impact on stress, exceeding 50%. Thirdly, a nonlinear fitting regression method is used to determine the HJC constitutive model parameters of naturally jointed angular slate. The relationship between the HJC model parameters and the inclination angle of slate joints is derived, and the accuracy of these parameters is verified through numerical simulation methods. The error between the numerical simulation and indoor experiments is within 10%, indicating a high level of simulation accuracy. The research findings provide a highly precise numerical simulation method for similar projects.

5.
Sci Rep ; 12(1): 22331, 2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36567401

ABSTRACT

In situ stress and joints have a significant impact on the propagation and attenuation pattern of blast stress waves, and they are two important factors that must be considered for tunnel blasting hole network deployment. This paper proposes a blast stress wave attenuation equation and a peripheral hole distance calculation method under the combined action of in situ stress and joints. First, the static and dynamic parameters of the jointed slate are obtained by drilling core samples in the field and conducting indoor tests. Next, considering the geometric and physical attenuation of the blast stress wave, the attenuation formula of the blast stress wave under the combined action of in situ stress and joints is derived. Based on the theory of the combined action of stress waves and explosive gas, a formula for calculating the peripheral hole distance that integrates the effects of in situ stress, joints, and tensile strength of the rock body is proposed. Finally, LS-PREPOST software is used to analyze the damage to the surrounding rock, verified by an on-site blasting test. The results show that the blast stress wave attenuation formula proposed in this paper can accurately predict the stress wave peak value under the combined action of in situ stress and joints. Combining the geological conditions and blasting parameters of the Bayueshan Tunnel study section, the optimal peripheral hole spacing is calculated to be 45 cm. The average over-excavation value of the grade IV surrounding rock is controlled within 22 cm and the over-consumption of concrete per linear meter is controlled within 100% using the peripheral hole layout method and the hole network layout parameters proposed in this paper. The research results provide a reference for the control of over-excavation and under-excavation in large-section tunnel blasting.

SELECTION OF CITATIONS
SEARCH DETAIL