Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Int J Biol Macromol ; 279(Pt 1): 135024, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39208909

ABSTRACT

Myogenic regulatory factors (MRFs) are a group of transcription factors that regulate the activity of skeletal muscle cells during embryonic development and postnatal myogenesis in various vertebrate species. However, the role of MRFs in limb regeneration remains poorly understood in crustaceans. In this study, we identified a full-length cDNA encoding a myogenic regulatory factor from Eriocheir sinensis (EsMRF) and evaluated its mRNA expression profile during muscle development, growth, and regeneration. The expression of EsMRF was found to correlate with the onset of muscle formation during development and with the regeneration process following limb autotomy. To elucidate the function of MRF during limb regeneration in E. sinensis, we assessed regenerative efficiency using RNA interference (RNAi) targeting EsMRF. Our findings revealed that the blockade of MRF delayed limb regeneration by disrupting the proliferation and myogenesis of blastema cells at the basal growth stage. Furthermore, luciferase assays results demonstrated that EsMRF can transcriptionally activate target myogenic genes, either through direct binding to their promoters or by interacting with co-regulators such as EsHEB or EsMEF2. This study identifies a novel MRF in E. sinensis and elucidates its function during limb regeneration, thereby contributing to our understanding of muscle growth and regeneration mechanisms in crustaceans.

2.
Psychol Trauma ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990693

ABSTRACT

OBJECTIVE: The prevalence of child maltreatment is high in China. Child maltreatment damages children's developing abilities (e.g., emotional functions, self-perception) and is highly associated with a new diagnostic disorder, namely, complex posttraumatic stress disorder (CPTSD). The mechanism of CPTSD is not clear, and attachment might be a crucial factor in the development of CPTSD symptoms. The prevalence of child maltreatment is high in China. Child maltreatment damages children's developing abilities (e.g., emotional functions, self-perception) and is highly associated with a new diagnostic disorder, namely, complex posttraumatic stress disorder (CPTSD). The mechanism of CPTSD is not clear and attachment might be a crucial factor in the development of CPTSD symptoms. To explore the mediating roles of attachment anxiety and attachment avoidance in the relationship between five forms of childhood trauma (i.e., physical abuse, physical neglect, emotional abuse, emotional neglect, sexual abuse) and CPTSD symptoms. METHOD: The present study included 395 adolescents who had experienced at least one type of traumatic childhood experience. RESULTS: Our findings showed that emotional abuse could predict posttraumatic stress disorder and disturbances of self-organization (DSO) symptoms via attachment anxiety. In addition, childhood neglect experiences (i.e., physical and emotional neglect) could predict DSO symptoms via attachment avoidance. CONCLUSIONS: Attachment is an important framework for understanding individuals' CPTSD symptoms following childhood traumatic experiences. Parents and educators should learn effective parenting styles that promote secure attachment, while researchers and clinical practitioners should further explore attachment-based trauma intervention approaches. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

3.
Dalton Trans ; 53(30): 12710-12719, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39017632

ABSTRACT

Constructing an S-scheme system with highly active catalysts is a significant approach for improving the separation of photoinduced carriers to solve the related environmental aggravation. In this study, a well-designed S-scheme AgVO3/CaIn2S4 photocatalyst was synthesized for water purification by in situ growing CaIn2S4 nanocrystals on AgVO3 nanorod surfaces. The optimized AgVO3/CaIn2S4 heterostructure demonstrates an enhanced photocatalytic efficiency (94.1%) toward tetracycline hydrochloride (TCH) degradation compared with bare AgVO3 (42.6%) and CaIn2S4 (81.6%). The significant enhancement of photocatalytic activity is attributed to the S-scheme charge transfer mechanism in the AgVO3/CaIn2S4 heterostructure, which effectively directs photogenerated charge migration, boosts charge transfer, and preserves the high redox capacity of photoexcited electrons and holes on different active sites. This study is expected to offer insights into strategically designing and preparing S-scheme heterojunction photocatalysts to improve water purification.

4.
Food Funct ; 15(10): 5238-5250, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38632897

ABSTRACT

Exosome-like nanoparticles (ELNs) are novel naturally occurring plant ultrastructures and contain unique bioactive components. However, the potential applications and biological functions of plant ELNs, especially in the context of health promotion and disease prevention, remain largely unexplored. This study aimed to explore the biological activities and functional mechanisms of Actinidia arguta-derived exosome-like nanoparticles (AAELNs). We reported the development of AAELNs, which possess particle sizes of 157.8 nm and a negative surface charge of -23.07 mV, uptaking by RAW264.7 cells, and reduction of oxidative stress by decreasing the activity of GSH-Px and T-SOD and increasing the content of MDA. Through the use of high-throughput sequencing technology, 12 known miRNA families and 23 additional miRNAs were identified in AAELNs, GO and KEGG term enrichment analysis revealed the potential of AAELNs-miRNAs in modulating neural-relevant behaviors. Additionally, LC-MS/MS analysis detected a total of 32 major lipid classes, 430 lipid subclasses, and 1345 proteins in AAELNs. Furthermore, in vivo fluorescence disappearance and in vitro fermentation experiments demonstrated that AAELNs were able to enter the colon and improve the microbial structure. These findings suggest that AAELNs could serve as nanoshuttles in food, potentially offering health-enhancing properties.


Subject(s)
Actinidia , Exosomes , Gastrointestinal Microbiome , Nanoparticles , Mice , Actinidia/chemistry , Animals , Nanoparticles/chemistry , RAW 264.7 Cells , Exosomes/metabolism , Oxidative Stress/drug effects , MicroRNAs/metabolism , MicroRNAs/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male
5.
Front Microbiol ; 15: 1391814, 2024.
Article in English | MEDLINE | ID: mdl-38601929

ABSTRACT

Background and aim: The global burden of invasive fungal infections (IFIs) is emerging in immunologic deficiency status from various disease. Patients with acute-on-chronic hepatitis B liver failure (ACHBLF) are prone to IFI and their conditions are commonly exacerbated by IFI. However, little is known about the characteristics and risk factors for IFI in hospitalized ACHBLF patients. Methods: A total of 243 hospitalized ACHBLF patients were retrospectively enrolled from January 2010 to July 2023. We performed restricted cubic spline analysis to determine the non-linear associations between independent variables and IFI. The risk factors for IFI were identified using logistic regression and the extreme gradient boosting (XGBoost) algorithm. The effect values of the risk factors were determined by the SHapley Additive exPlanations (SHAP) method. Results: There were 24 ACHBLF patients (9.84%) who developed IFI on average 17.5 (13.50, 23.00) days after admission. The serum creatinine level showed a non-linear association with the possibility of IFI. Multiple logistic regression revealed that length of hospitalization (OR = 1.05, 95% CI: 1.02-1.08, P = 0.002) and neutrophilic granulocyte percentage (OR = 1.04, 95% CI: 1.00-1.09, P = 0.042) were independent risk factors for IFI. The XGBoost algorithm showed that the use of antibiotics (SHAP value = 0.446), length of hospitalization (SHAP value = 0.406) and log (qHBV DNA) (SHAP value = 0.206) were the top three independent risk factors for IFI. Furthermore, interaction analysis revealed no multiplicative effects between the use of antibiotics and the use of glucocorticoids (P = 0.990). Conclusion: IFI is a rare complication that leads to high mortality in hospitalized ACHBLF patients, and a high neutrophilic granulocyte percentage and length of hospitalization are independent risk factors for the occurrence of IFI.

6.
Int J Biol Macromol ; 265(Pt 1): 130863, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490380

ABSTRACT

This study investigated the regulatory effects of Sporisorium reilianum polysaccharides (SRPS) on metabolism and the intestinal barrier in mice with colitis induced by dextran sulfate sodium (DSS). SRPS were resistant to the digestion of saliva, gastric juices, and intestinal fluid. SRPS significantly reduced the disease activity index and inhibited DSS-induced colon shortening. The expression of proinflammatory cytokines in the colon was normal (P < 0.05). Acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid contents increased. Moreover, 64 biomarker metabolites were affected, including 42 abnormal decreases and 22 abnormal increases caused by DSS, which targeted amino acid biosynthesis; tryptophan metabolism; protein digestion and absorption; aminoacyl-tRNA biosynthesis; and glycine, serine, and threonine metabolism. In addition, SRPS reduced goblet cell loss and increased mucin secretion. The short-chain fatty acid receptor GPR41 was activated, and zonula occludens-1 and occludin expression levels were upregulated. Epithelial cell apoptosis was inhibited by increased Bcl-2 and decreased Bax expression NLRP3, ASC, and caspase-1 protein levels decreased. Intestinal barrier damage improved, and colon inflammation was reduced. Thus, our preliminary findings reveal that SRPS regulates metabolism and has the potential to protect the intestinal barrier in ulcerative colitis mice.


Subject(s)
Basidiomycota , Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon , Intestinal Barrier Function , Intestinal Mucosa/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Polysaccharides/adverse effects , Dextran Sulfate/adverse effects , Mice, Inbred C57BL , Disease Models, Animal
7.
Front Microbiol ; 15: 1337435, 2024.
Article in English | MEDLINE | ID: mdl-38444812

ABSTRACT

Constructed wetlands are an efficient and cost-effective method of restoring degraded wetlands, in which the microorganisms present make a significant contribution to the ecosystem. In this study, we comprehensively investigated the patterns of diversity and assembly processes of 7 types of constructed wetlands at the rhizosphere and phyllosphere levels. The results showed that the rhizosphere communities of the constructed wetlands exhibited a more balanced structure than that of paddy fields, and 5 types of constructed wetland demonstrated higher potential diversity than that of paddy fields. However, the opposite trend was observed for the phyllosphere communities. Analysis of mean nearest taxon difference indicated that both deterministic and stochastic processes affected the establishment of the rhizosphere and phyllosphere communities, and stochastic processes may have had a larger effect. An iCAMP model showed that dispersal limitation was the most important factor (67% relative contribution) in the rhizosphere community, while drift was the most important (47% relative contribution) in the phyllosphere community. Mantel tests suggested that sucrase, average height, top height, total biomass, belowground biomass, maximum water-holding capacity, and capillary porosity were significantly correlated with processes in the rhizosphere community, whereas factors such as the deterministic process, average height, top height, and SOC were significantly correlated with deterministic processes in the phyllosphere community. Our results can assist in the evaluation of artificial restorations, and can provide understanding of the ecological processes of microbial communities, as well as new insights into the manipulation of microorganisms in polluted wetland ecosystems.

8.
Signal Transduct Target Ther ; 9(1): 40, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355661

ABSTRACT

Emerging and recurrent infectious diseases caused by human coronaviruses (HCoVs) continue to pose a significant threat to global public health security. In light of this ongoing threat, the development of a broad-spectrum drug to combat HCoVs is an urgently priority. Herein, we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). These aptamers have nanomolar affinity with the nucleocapsid protein (NP) of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and also show excellent binding efficiency to the N proteins of both SARS, MERS, HCoV-OC43 and -NL63 with affinity KD values of 1.31 to 135.36 nM. Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant (BA.5) with EC50 values at 2.00 nM and 41.08 nM, respectively. The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs (-229E and -HKU1). In conclusion, we have identified six aptamers with a high pan-coronavirus antiviral activity, which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleocapsid Proteins/genetics , Antiviral Agents/pharmacology
9.
Nanotechnology ; 35(15)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38198715

ABSTRACT

A novel 3D hierarchical TiO2/CaIn2S4/C3N4arrays with dual heterojunctions photoanode is constructed by stepwise deposition of CaIn2S4nanosheets and ultrathin C3N4onto the well-aligned TiO2nanorods arrays. Integrating the merit of the superior ability of CaIn2S4and C3N4to harvest visible light, dual type-Ⅱ heterojunction band structure and one-dimensional ordered nanostructures, the TiO2/CaIn2S4/C3N4photoanode exhibits simultaneous significant improvements in visible-light harvesting, charge separation and electron transfer capability. At 1.23 V (versus reversible hydrogen electrode) under AM 1.5 G irradiation, the TiO2/CaIn2S475/C3N4photoanode exhibits a photocurrent density of 4.5 mA cm-2, which is 5.2 and 51.1-fold higher than that of TiO2/CaIn2S475 and pristine TiO2photoanode, respectively. Moreover, the applied bias photo-to-current efficiency (ABPE) of the TiO2/CaIn2S475/C3N4photoanode reaches 3.5% at 0.36 V (versus reversible hydrogen electrode). These results are helpful for fabricating more efficient heterostructure photoelectrodes.

10.
Exp Clin Endocrinol Diabetes ; 132(1): 17-22, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38237612

ABSTRACT

OBJECTIVE: Antithyroid drug (ATD)-induced agranulocytosis (TIA) is the most serious adverse effect during ATD treatment of Graves' disease (GD). Previously, the MICA gene was reported to be associated with TIA. MICA protein is an important ligand for the NKG2D protein, which is encoded by the KLRK1 gene and KLRC4-KLRK1 read-through transcription. This study further investigated the association between KLRC4-KLRK1 gene polymorphisms and susceptibility to TIA. METHODS: Twenty-eight candidate single nucleotide polymorphisms (SNPs) on KLRC4-KLRK1 read-through transcription were evaluated by the iPLEX MassARRAY system in 209 GD control patients and 38 TIA cases. RESULTS: A significant association of rs2734565 polymorphism with TIA was found (p=0.02, OR=1.80, 95% CI=1.09-2.96). The haplotype C-A-A-C-G, including rs2734565-C, was associated with a significantly higher risk of TIA (p=4.79E-09, OR=8.361, 95% CI=3.737-18.707). In addition, the interval time from hyperthyroidism to agranulocytosis onset was shorter in patients carrying the rs2734565-C allele than in non-carrying groups (45.00 (14.00-6570.00) d vs. 1080.00 (30.00-3600.00) d, p=0.046), and the interval from ATD treatment to agranulocytosis onset was also shorter in patients carrying rs2734565-C allele (29.00 (13.00-75.00) d vs. 57.50 (21.00-240.00) d, p=0.023). CONCLUSIONS: The findings suggest that the KLRC4-KLRK1 gene polymorphism is associated with susceptibility and progression of ATD-induced agranulocytosis. Patients carrying the rs2734565-C allele had a higher susceptibility and faster onset time of TIA.


Subject(s)
Agranulocytosis , Graves Disease , Hyperthyroidism , Humans , Agranulocytosis/chemically induced , Agranulocytosis/genetics , Agranulocytosis/drug therapy , Antithyroid Agents/adverse effects , Graves Disease/drug therapy , Graves Disease/genetics , Hyperthyroidism/drug therapy , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/therapeutic use , Polymorphism, Single Nucleotide
11.
Mol Autism ; 15(1): 5, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38254177

ABSTRACT

BACKGROUND: Helsmoortel-Van der Aa syndrome (HVDAS) is a rare genetic disorder caused by variants in the activity-dependent neuroprotector homeobox (ADNP) gene; hence, it is also called ADNP syndrome. ADNP is a multitasking protein with the function as a transcription factor, playing a critical role in brain development. Furthermore, ADNP variants have been identified as one of the most common single-gene causes of autism spectrum disorder (ASD) and intellectual disability. METHODS: We assembled a cohort of 15 Chinese pediatric patients, identified 13 variants in the coding region of ADNP gene, and evaluated their clinical phenotypes. Additionally, we constructed the corresponding ADNP variants and performed western blotting and immunofluorescence analysis to examine their protein expression and subcellular localization in human HEK293T and SH-SY5Y cells. RESULTS: Our study conducted a thorough characterization of the clinical manifestations in 15 children with ADNP variants, and revealed a broad spectrum of symptoms including global developmental delay, intellectual disability, ASD, facial abnormalities, and other features. In vitro studies were carried out to check the expression of ADNP with identified variants. Two cases presented missense variants, while the remainder exhibited nonsense or frameshift variants, leading to truncated mutants in in vitro overexpression systems. Both overexpressed wildtype ADNP and all the different mutants were found to be confined to the nuclei in HEK293T cells; however, the distinctive pattern of nuclear bodies formed by the wildtype ADNP was either partially or entirely disrupted by the mutant proteins. Moreover, two variants of p.Y719* on the nuclear localization signal (NLS) of ADNP disrupted the nuclear expression pattern, predominantly manifesting in the cytoplasm in SH-SY5Y cells. LIMITATIONS: Our study was limited by a relatively small sample size and the absence of a longitudinal framework to monitor the progression of patient conditions over time. Additionally, we lacked in vivo evidence to further indicate the causal implications of the identified ADNP variants. CONCLUSIONS: Our study reported the first cohort of HVDAS patients in the Chinese population and provided systematic clinical presentations and laboratory examinations. Furthermore, we identified multiple genetic variants and validated them in vitro. Our findings offered valuable insights into the diverse genetic variants associated with HVDAS.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neuroblastoma , Humans , Child , Intellectual Disability/genetics , Autism Spectrum Disorder/genetics , HEK293 Cells , Transcription Factors , Nerve Tissue Proteins , Homeodomain Proteins/genetics
12.
Sci Total Environ ; 912: 169155, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38065493

ABSTRACT

Characterized by irregular spatial and temporal variations of pollutant loading and complex occurrence mechanisms, agricultural nonpoint source pollution (ANPSP) has always been a great challenge in field restoration worldwide. Returning farmlands to wetlands (RFWs) as an ecological restoration mode among various constructed wetlands was selected to manage ANPSP in this study. Triarrhena lutarioriparia, Nelumbo nucifera and Zizania latifolia monocultures were designed and the water pollutants was monitored. N. nucifera and Z. latifolia could reach the highest TN (53.28 %) and TP (53.22 %) removal efficiency, respectively. By 16s high-throughput sequencing of rhizosphere bacteria, 45 functional species were the main contributors for efficient N and P removal, and 38 functional keystone taxa (FKT) were found with significant ecological niche roles and metabolic functions. To our knowledge, this is the first study to explore the microbial driving N and P removal mechanism in response to ANPSP treated by field scale RFWs.


Subject(s)
Environmental Pollutants , Non-Point Source Pollution , Water Pollutants , Wetlands , Nitrogen/analysis , Phosphorus , Waste Disposal, Fluid
13.
J Phys Condens Matter ; 36(13)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38064749

ABSTRACT

Among novel two-dimensional materials, transition metal dichalcogenides (TMDs) with 3dmagnetic elements have been extensively researched owing to their unique magnetic, electric, and photoelectric properties. As an important member of TMDs, CoSe2is an interesting material with controversial magnetic properties, hitherto there are few reports related to the magnetism of CoSe2materials. Here, we report the synthesis of CoSe2nanoplates on Al2O3substrates by chemical vapor deposition (CVD). The CVD-grown CoSe2nanoplates exhibit three typical morphologies (regular hexagonal, hexagonal, and pentagonal shapes) and their lateral sizes and thickness of CoSe2nanoplates can reach up to hundreds of microns and several hundred nanometers, respectively. The electric-transport measurement shows a metallic feature of CoSe2nanoplates. Furthermore, the slanted hysteresis loop and nonzero remnant magnetization of the CoSe2nanoplates confirm the ferromagnetism in the temperature range of 5-400 K. This work provides a novel platform for designing CoSe2-based spintronic devices and studying related magnetic mechanisms.

14.
Open Life Sci ; 18(1): 20220791, 2023.
Article in English | MEDLINE | ID: mdl-38152580

ABSTRACT

As a vital component of arbor forests, understory vegetation serves as an essential buffer zone for storing carbon due to its strong capacity for community regeneration. This study aimed to identify the diversity pattern and construction mechanism of Platycladus orientalis and Pinus elliottii understory vegetation based on large-scale sample surveys. The Bayesian Information Criterion value of species abundance distribution (SAD) indicated that the Zipf and Zipf-Mandelbrot models were the best-fitting models. The SAD and gambin fitting results suggested that the Pi. elliottii community had a more balanced structure, with most species being relatively abundant. The multiple regression tree model detected four and six indicator species in P. orientalis and Pi. elliottii communities, respectively. The α-diversity index increased with a rise in altitude and showed a wavy curve with latitude. Linear regression between the ß diversity and environmental and geographic distance indicated that the P. orientalis and Pi. elliottii understory communities tended to be dominated by different ecological processes. The partition of ß diversity indicated that both communities were dominated by turnover processes, which were caused by environmental classification or spatial constraints. This study helped to understand the diversity maintenance in the P. orientalis and Pi. elliottii understory vegetation communities, and will benefit for diversity restoration and conservation of pure conifer forests.

15.
Fa Yi Xue Za Zhi ; 39(5): 433-440, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-38006261

ABSTRACT

OBJECTIVES: The common differentially expressed mRNAs in brain, heart and liver tissues of deceased sudden infant death syndrome (SIDS) and infectious sudden death in infancy (ISDI) confirmed by autopsy was screened by bioinformatics to explore the common molecular markers and pathogenesis of SIDS and ISDI. METHODS: The datasets of GSE70422 and GSE136992 were downloaded, the limma of R software was used to screen differentially expressed mRNA in different tissue samples of SIDS and ISDI decedents for overlapping analysis. The clusterProfiler of R software was used to conduct gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The protein-protein interaction (PPI) network was constructed by STRING database, while the hub gene was screened by cytoHubba plug-in. RESULTS: Compared with the control group, there were 19 significant differentially expressed genes in the tissue samples of SIDS and ISDI decedents, among which 16 in the heart tissue and 3 in the liver tissue, and the astrotactin 1 (ASTN1) gene expression difference in the heart tissue was most significant. The PPI network identified Ras homolog family member A (RHOA), integrin subunit alpha 1 (ITGA1), and H2B clustered histone 5 (H2BC5) were hub genes. The analysis of GO and KEGG showed that differentially expressed genes were enriched in the molecular pathways of actin cytoskeleton regulation, focal adhesion and response to mycophenolic acid. CONCLUSIONS: ASTN1, RHOA and ITGA1 may participate in the development of SIDS and ISDI. The enrichment of differentially expressed genes in immune and inflammatory pathways suggests a common molecular regulatory mechanism between SIDS and ISDI. These findings are expected to provide new biomarkers for molecular anatomy and forensic identification of SIDS and ISDI.


Subject(s)
Gene Expression Profiling , Sudden Infant Death , Humans , Infant , Sudden Infant Death/genetics , Gene Regulatory Networks , Protein Interaction Maps/genetics , Computational Biology
16.
Opt Express ; 31(15): 23790-23800, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475221

ABSTRACT

Novel back-illuminated modified uni-traveling-carrier photodiodes (MUTC-PDs) with wide bandwidth and high saturation power are demonstrated. The effect of cliff layer doping on the electric field distribution is investigated to achieve fast carrier transport. MUTC-PDs with miniaturized device diameter and low contact resistance are fabricated to improve the RC-limited bandwidth. Meanwhile, inductive peaking is implemented to further extend the bandwidth. PDs with 3-µm and 3.6-µm-diameter exhibit a ultrawide bandwidth of 230 GHz and 200 GHz, together with -4.94 dBm and -2.14 dBm saturation power at 220 GHz and 200 GHz, respectively.

17.
Article in English | MEDLINE | ID: mdl-37318969

ABSTRACT

The past few years have witnessed considerable efforts devoted to translating images from one domain to another, mainly aiming at editing global style. Here, we focus on a more general case, selective image translation (SLIT), under an unsupervised setting. SLIT essentially operates through a shunt mechanism that involves learning gates to manipulate only the contents of interest (CoIs), which can be either local or global, while leaving the irrelevant parts unchanged. Existing methods typically rely on a flawed implicit assumption that CoIs are separable at arbitrary levels, ignoring the entangled nature of DNN representations. This leads to unwanted changes and learning inefficiency. In this work, we revisit SLIT from an information-theoretical perspective and introduce a novel framework, which equips two opposite forces to disentangle the visual features. One force encourages independence between spatial locations on the features, while the other force unites multiple locations to form a "block" that jointly characterizes an instance or attribute that a single location may not independently characterize. Importantly, this disentanglement paradigm can be applied to visual features of any layer, enabling shunting at arbitrary feature levels, which is a significant advantage not explored in existing works. Our approach has undergone extensive evaluation and analysis, confirming its effectiveness in significantly outperforming the state-of-the-art baselines.

18.
J Biomol Struct Dyn ; : 1-15, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37345536

ABSTRACT

Breast cancer is the leading cause of cancer-related deaths in women. Previous studies have indicated that disrupting the interaction between Metadherin (MTDH) and Staphylococcal nuclease domain containing 1 (SND1) can inhibit breast cancer development. Understanding the binding mode of small molecule inhibitors with SND1 is of great significance for designing drugs targeting the MTDH-SND1 complex. In this study, we conducted all-atom molecular dynamics (MD) simulations in solution and performed binding energy calculations to gain insights into the binding mechanism of small molecules to SND1. The binding site of SND1 for small molecules is relatively rigid, and the binding of the small molecule and the mutation of key residues have little effect on the conformation of the binding site. SND1 binds more tightly to C26-A6 than to C26-A2, as C26-A2 undergoes a 180° directional change during the simulation process. The key residue mutations have a direct effect on the position and orientation of small molecule in the binding site. The key residues make primary contributions to the binding energy through van der Waals interaction and nonpolar solvation energy, although the contribution from nonpolar solvation is relatively minor. The key residue mutations also affect the formation of hydrogen bonds and ultimately the stability of the small molecule-SND1 complex.Communicated by Ramaswamy H. Sarma.

19.
Sci Rep ; 13(1): 8392, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37225857

ABSTRACT

The application of drip irrigation has been paid more and more attention, but there was lack of systematic comparative analysis between drip irrigation and conventional border irrigation method for maize, currently. A 7-year field study from 2015 to 2021 evaluated the effects of drip irrigation (DI, 540 mm) or conventional border irrigation method (BI, 720 mm) on maize growth, water use efficiency (WUE) as well as profitability. The results showed the plant height, leaf area index, yield, WUE and economic benefit of maize with DI had significantly higher than BI. The dry matter translocation, the dry matter transfer efficiency and contribution of dry matter translocation to grain with DI showed significant increase of 27.44%, 13.97% and 7.85% compared to BI, respectively. In comparison to conventional border irrigation, the yield of drip irrigation increased by 14.39%, as well as WUE and irrigation water use efficiency (IWUE) increased by 53.77% and 57.89%. The net return and economic benefit of drip irrigation was 1998.87 and 756.58 USD$ hm-1 higher than that of BI. Drip irrigation increased net return and benefit/cost ratio by 60.90% and 22.88% compared with BI. These results demonstrate that the drip irrigation can effectively improve the growth, yield, WUE and economic benefit of maize in northwest China. Therefore, drip irrigation can be used for maize cultivation to increase crop yield and WUE in northwest China, which has cut down on irrigation water about 180 mm.

20.
Environ Res ; 231(Pt 2): 116131, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37209984

ABSTRACT

The soil organic carbon stock (SOCS) is considered as one of the largest carbon reservoirs in terrestrial ecosystems, and small changes in soil can cause significant changes in atmospheric CO2 concentration. Understanding organic carbon accumulation in soils is crucial if China is to meet its dual carbon target. In this study, the soil organic carbon density (SOCD) in China was digitally mapped using an ensemble machine learning (ML) model. First, based on SOCD data obtained at depths of 0-20 cm from 4356 sampling points (15 environmental covariates), we compared the performance of four ML models, namely random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM), and artificial neural network (ANN) models, in terms of coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values. Then, we ensembled four models using Voting Regressor and the principle of stacking. The results showed that ensemble model (EM) accuracy was high (RMSE = 1.29, R2 = 0.85, MAE = 0.81), so that it could be a good choice for future research. Finally, the EM was used to predict the spatial distribution of SOCD in China, which ranged from 0.63 to 13.79 kg C/m2 (average = 4.09 (±1.90) kg C/m2). The SOC storage amount in surface soil (0-20 cm) was 39.40 Pg C. This study developed a novel, ensemble ML model for SOC prediction, and improved our understanding of the spatial distribution of SOC in China.


Subject(s)
Ecosystem , Soil , Carbon/analysis , Environmental Monitoring/methods , China
SELECTION OF CITATIONS
SEARCH DETAIL