Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 7(3): 1947-1957, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38394042

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is associated with high levels of morbidity and is considered a difficult-to-treat infection, often requiring nonstandard treatment regimens and antibiotics. Since over 40% of the emerging antibiotic compounds have insufficient solubility that limits their bioavailability and thus efficacy through oral or intravenous administration, it is crucial that alternative drug delivery products be developed for wound care applications. Existing effective treatments for soft tissue MRSA infections, such as fusidic acid (FA), which is typically administered orally, could also benefit from alternative routes of administration to improve local efficacy and bioavailability while reducing the required therapeutic dose. Herein, we report an antimicrobial poly(oligoethylene glycol methacrylate) (POEGMA)-based composite hydrogel loaded with fusidic acid-encapsulating self-assembled polylactic acid-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (PLA-POEGMA) nanoparticles for the treatment of MRSA-infected skin wounds. The inclusion of the self-assembled nanoparticles (380 nm diameter when loaded with fusidic acid) does not alter the favorable mechanical properties and stability of the hydrogel in the context of its use as a wound dressing, while fusidic acid (FA) can be released from the hydrogel over ∼10 h via a diffusion-controlled mechanism. The antimicrobial studies demonstrate a clear zone of inhibition in vitro and a 1-2 order of magnitude inhibition of bacterial growth in vivo in an MRSA-infected full-thickness excisional murine wound model even at very low antibiotic doses. Our approach thus can both circumvent challenges in the local delivery of hydrophobic antimicrobial compounds and directly deliver antimicrobials into the wound to effectively combat methicillin-resistant infections using a fraction of the drug dose required using other clinically relevant strategies.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Polyethylene Glycols , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fusidic Acid/pharmacology , Fusidic Acid/therapeutic use , Hydrogels/chemistry
2.
Acta Biomater ; 128: 250-261, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33945881

ABSTRACT

Structured hydrogel sheets offer the potential to mimic the mechanics and morphology of native cell environments in vitro; however, controlling the morphology of such sheets across multiple length scales to give cells consistent multi-dimensional cues remains challenging. Here, we demonstrate a simple two-step process based on sequential electrospinning and thermal wrinkling to create nanocomposite poly(oligoethylene glycol methacrylate)/cellulose nanocrystal hydrogel sheets with a highly tunable multi-scale wrinkled (micro) and fibrous (nano) morphology. By varying the time of electrospinning, rotation speed of the collector, and geometry of the thermal wrinkling process, the hydrogel nanofiber density, fiber alignment, and wrinkle geometry (biaxial or uniaxial) can be independently controlled. Adhered C2C12 mouse myoblast muscle cells display a random orientation on biaxially wrinkled sheets but an extended morphology (directed preferentially along the wrinkles) on uniaxially wrinkled sheets. While the nanofiber orientation had a smaller effect on cell alignment, parallel nanofibers promoted improved cell alignment along the wrinkle direction while perpendicular nanofibers disrupted alignment. The highly tunable structures demonstrated are some of the most complex morphologies engineered into hydrogels to-date without requiring intensive micro/nanofabrication approaches and offer the potential to precisely regulate cell-substrate interactions in a "2.5D" environment (i.e. a surface with both micro- and nano-structured topographies) for in vitro cell screening or in vivo tissue regeneration. STATEMENT OF SIGNIFICANCE: While structured hydrogels can mimic the morphology of natural tissues, controlling this morphology over multiple length scales remains challenging. Furthermore, the incorporation of secondary morphologies within individual hydrogels via simple manufacturing techniques would represent a significant advancement in the field of structured biomaterials and an opportunity to study complex cell-biomaterial interactions. Herein, we leverage a two-step process based on electrospinning and thermal wrinkling to prepare structured hydrogels with microscale wrinkles and nanoscale fibers. Fiber orientation/density and wrinkle geometry can be independently controlled during the electrospinning and thermal wrinkling processes respectively, demonstrating the flexibility of this technique for creating well-defined multiscale hydrogel structures. Finally, we show that while wrinkle geometry is the major determinant of cell alignment, nanofiber orientation also plays a role in this process.


Subject(s)
Nanofibers , Nanoparticles , Animals , Biocompatible Materials , Cellulose , Hydrogels , Mice
3.
Acta Biomater ; 112: 101-111, 2020 08.
Article in English | MEDLINE | ID: mdl-32522716

ABSTRACT

While the benefits of both hydrogels and drug delivery to enhance wound healing have been demonstrated, the highly hydrophilic nature of hydrogels creates challenges with respect to the effective loading and delivery of hydrophobic drugs beneficial to wound healing. Herein, we utilize pressurized gas expanded liquid (PGX) technology to produce very high surface area (~200 m2/g) alginate scaffolds and describe a method for loading the scaffolds with ibuprofen (via adsorptive precipitation) and crosslinking them (via calcium chelation) to create a hydrogel suitable for wound treatment and hydrophobic drug delivery. The high surface area of the PGX-processed alginate scaffold facilitates >8 wt% loading of ibuprofen into the scaffold and controlled in vitro ibuprofen release over 12-24 h. In vivo burn wound healing assays demonstrate significantly accelerated healing with ibuprofen-loaded PGX-alginate/calcium scaffolds relative to both hydrogel-only and untreated controls, demonstrating the combined benefits of ibuprofen delivery to suppress inflammation as well as the capacity of the PGX-alginate/calcium hydrogel to maintain wound hydration and facilitate continuous calcium release to the wound. The use of PGX technology to produce highly porous scaffolds with increased surface areas, followed by adsorptive precipitation of a hydrophobic drug onto the scaffolds, offers a highly scalable method of creating medicated wound dressings with high drug loadings. STATEMENT OF SIGNIFICANCE: While medicated hydrogel-based wound dressings offer clear advantages in accelerating wound healing, the inherent incompatibility between conventional hydrogels and many poorly water-soluble drugs of relevance in wound healing remains a challenge. Herein, we leveraged supercritical fluids-based strategies to both process and subsequently impregnate alginate, followed by post-crosslinking to form a hydrogel, to create a very high surface area alginate hydrogel scaffold loaded with high hydrophobic drug contents (here, >8 wt% ibuprofen) without the need for any pore-forming additives. The impregnated scaffolds significantly accelerated burn wound healing while also promoting regeneration of the native skin morphology. We anticipate this approach can be leveraged to load clinically-relevant and highly bioavailable dosages of hydrophobic drugs in hydrogels for a broad range of potential applications.


Subject(s)
Burns , Hydrogels , Alginates , Bandages , Burns/drug therapy , Humans , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL