Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters








Publication year range
1.
Mol Ecol ; 33(1): e17199, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38018020

ABSTRACT

Identifying genetic conservation units (CUs) in threatened species is critical for the preservation of adaptive capacity and evolutionary potential in the face of climate change. However, delineating CUs in highly mobile species remains a challenge due to high rates of gene flow and genetic signatures of isolation by distance. Even when CUs are delineated in highly mobile species, the CUs often lack key biological information about what populations have the most conservation need to guide management decisions. Here we implement a framework for CU identification in the Canada Warbler (Cardellina canadensis), a migratory bird species of conservation concern, and then integrate demographic modelling and genomic offset to guide conservation decisions. We find that patterns of whole genome genetic variation in this highly mobile species are primarily driven by putative adaptive variation. Identification of CUs across the breeding range revealed that Canada Warblers fall into two evolutionarily significant units (ESU), and three putative adaptive units (AUs) in the South, East, and Northwest. Quantification of genomic offset, a metric of genetic changes necessary to maintain current gene-environment relationships, revealed significant spatial variation in climate vulnerability, with the Northwestern AU being identified as the most vulnerable to future climate change. Alternatively, quantification of past population trends within each AU revealed the steepest population declines have occurred within the Eastern AU. Overall, we illustrate that genomics-informed CUs provide a strong foundation for identifying current and future regional threats that can be used to inform management strategies for a highly mobile species in a rapidly changing world.


Subject(s)
Conservation of Natural Resources , Passeriformes , Animals , Endangered Species , Genomics , Biological Evolution , Climate Change
2.
Mov Ecol ; 11(1): 24, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37122011

ABSTRACT

BACKGROUND: Each spring and fall billions of songbirds depart on nocturnal migrations across the globe. Theory suggests that songbirds should depart on migration shortly after sunset to maximize their potential for nightly flight duration or to time departure with the emergence of celestial cues needed for orientation and navigation. Although captive studies have found that songbirds depart during a narrow window of time after sunset, observational studies have found that wild birds depart later and more asynchronously relative to sunset than predicted. METHODS: We used coded radio tags and automated radio-telemetry to estimate the time that nearly 400 individuals from nine songbird species departed their breeding or wintering grounds across North America. We also assessed whether each species was most likely beginning long-distance migratory flights at departure or instead first making non-migratory regional flights. We then explored variation in nocturnal departure time by post-departure movement type, species, age, sex, and season. RESULTS: We found that 90% of individuals from species that were likely initiating long-distance migratory flights departed within 69 min of civil dusk, regardless of species, season, age, or sex. By contrast, species that likely first made non-migratory regional movements away from the migratory destination departed later and more asynchronously throughout the night. Regardless of post-departure movement type, 98% of individuals departed after civil dusk but otherwise showed no preference in relation to twilight phase. CONCLUSIONS: Although the presence of celestial orientation cues at civil dusk may set a starting point for departure each night, the fact that species likely beginning long-distance migration departed earlier and more synchronously relative to civil dusk than those first making non-migratory regional movements is consistent with the hypothesis that departing promptly after civil dusk functions to maximize the potential for nightly flight duration and distance. By studying the onset of migration, our study provides baseline information about departure decisions that may enhance our understanding of departure timing throughout migration.

3.
Mov Ecol ; 11(1): 23, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37122025

ABSTRACT

BACKGROUND: Weather can have both delayed and immediate impacts on animal populations, and species have evolved behavioral adaptions to respond to weather conditions. Weather has long been hypothesized to affect the timing and intensity of avian migration, and radar studies have demonstrated strong correlations between weather and broad-scale migration patterns. How weather affects individual decisions about the initiation of migratory flights, particularly at the beginning of migration, remains uncertain. METHODS: Here, we combine automated radio telemetry data from four species of songbirds collected at five breeding and wintering sites in North America with hourly weather data from a global weather model. We use these data to determine how wind profit, atmospheric pressure, precipitation, and cloud cover affect probability of departure from breeding and wintering sites. RESULTS: We found that the probability of departure was related to changes in atmospheric pressure, almost completely regardless of species, season, or location. Individuals were more likely to depart on nights when atmospheric pressure had been rising over the past 24 h, which is predictive of fair weather over the next several days. By contrast, wind profit, precipitation, and cloud cover were each only informative predictors of departure probability in a single species. CONCLUSIONS: Our results suggest that individual birds actively use weather information to inform decision-making regarding the initiation of departure from the breeding and wintering grounds. We propose that birds likely choose which date to depart on migration in a hierarchical fashion with weather not influencing decision-making until after the departure window has already been narrowed down by other ultimate and proximate factors.

4.
Ecol Appl ; 33(3): e2816, 2023 04.
Article in English | MEDLINE | ID: mdl-36752658

ABSTRACT

Most research on boreal populations of woodland caribou (Rangifer tarandus caribou) has been conducted in areas of high anthropogenic disturbance. However, a large portion of the species' range overlaps relatively pristine areas primarily affected by natural disturbances, such as wildfire. Climate-driven habitat change is a key concern for the conservation of boreal-dependent species, where management decisions have yet to consider knowledge from multiple ecological domains integrated into a cohesive and spatially explicit forecast of species-specific habitat and demography. We used a novel ecological forecasting framework to provide climate-sensitive projections of habitat and demography for five boreal caribou monitoring areas within the Northwest Territories (NWT), Canada, over 90 years. Importantly, we quantify uncertainty around forecasted mean values. Our results suggest habitat suitability may increase in central and southwest regions of the NWT's Taiga Plains ecozone but decrease in southern and northwestern regions driven by conversion of coniferous to deciduous forests. We do not project that boreal caribou population growth rates will change despite forecasted changes to habitat suitability. Our results emphasize the importance of efforts to protect and restore northern boreal caribou habitat despite climate uncertainty while highlighting expected spatial variations that are important considerations for local people who rely on them. An ability to reproduce previous work, and critical thought when incorporating sources of uncertainty, will be important to refine forecasts, derive management decisions, and improve conservation efficacy for northern species at risk.


Subject(s)
Reindeer , Animals , Humans , Uncertainty , Conservation of Natural Resources/methods , Ecosystem , Forests
5.
Mov Ecol ; 9(1): 23, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33985582

ABSTRACT

BACKGROUND: Migratory connectivity links the different populations across the full cycle and across the species range and may lead to differences in survival among populations. Studies on spatial and temporal migratory connectivity along migration routes are rare, especially for small migratory animals. METHODS: We used an automated radio-telemetry array to assess migratory connectivity en route and between early and later stages of the fall migration of the eastern populations of Swainson's Thrush, and to assess the variation of migration pace between consecutive detection from the different receiving stations along the migratory journey. We tracked 241 individuals from across eastern Canada to determine if populations were mixing around the Gulf of Mexico. We also tested the influence of tagging longitude, latitude and age on migration pace. RESULTS: Migration routes varied and converged towards the northeast coast of the Gulf of Mexico, but in this region, populations maintained finer-scale spatial structure. Migration pace increased as birds progressed south, independent of age and tagging site. CONCLUSIONS: We showed that for songbirds, migratory connectivity can be maintained at fine spatial scales despite the regional convergence of populations, highlighting the importance of detailed spatial tracking for identification of population specific migration routes. Overall, our study provides a portrait of migratory movements of eastern Swainson's Thrush and a framework for understanding spatial structure in migration routes for other species.

6.
Proc Biol Sci ; 288(1949): 20203164, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33906409

ABSTRACT

Many migratory species are declining and for most, the proximate causes of their declines remain unknown. For many long-distance Neotropical migratory songbirds, it is assumed that habitat loss on breeding or non-breeding grounds is a primary driver of population declines. We integrated data collected from tracking technology, community science and remote sensing data to quantify migratory connectivity (MC), population trends and habitat loss. We quantified the correlation between forest change throughout the annual cycle and population declines of a long-distance migratory songbird, the Connecticut warbler (Oporornis agilis, observed decline: -8.99% yr-1). MC, the geographic link between populations during two or more phases of the annual cycle, was stronger between breeding and autumn migration routes (MC = 0.24 ± 0.23) than between breeding and non-breeding locations (MC = -0.2 ± 0.14). Different Connecticut warbler populations tended to have population-specific fall migration routes but overlapped almost completely within the northern Gran Chaco ecoregion in South America. Cumulative forest loss within 50 km of breeding locations and the resulting decline in the largest forested patch index was correlated more strongly with population declines than forest loss on migratory stopover regions or on wintering locations in South America, suggesting that habitat loss during the breeding season is a driver of observed population declines for the Connecticut warbler. Land-use practices that retain large, forested patches within landscapes will likely benefit breeding populations of this declining songbird, but further research is needed to help inform land-use practices across the full annual cycle to minimize the impacts to migratory songbirds and abate ongoing population declines.


Subject(s)
Songbirds , Animal Migration , Animals , Ecosystem , Seasons , South America
7.
PLoS One ; 15(6): e0234494, 2020.
Article in English | MEDLINE | ID: mdl-32544173

ABSTRACT

Predicting and mitigating impacts of climate change and development within the boreal biome requires a sound understanding of factors influencing the abundance, distribution, and population dynamics of species inhabiting this vast biome. Unfortunately, the limited accessibility of the boreal biome has resulted in sparse and spatially biased sampling, and thus our understanding of boreal bird population dynamics is limited. To implement effective conservation of boreal birds, a cost-effective approach to sampling the boreal biome will be needed. Our objective was to devise a sampling scheme for monitoring boreal birds that would improve our ability to model species-habitat relationships and monitor changes in population size and distribution. A statistically rigorous design to achieve these objectives would have to be spatially balanced and hierarchically structured with respect to ecozones, ecoregions and political jurisdictions. Therefore, we developed a multi-stage hierarchically structured sampling design known as the Boreal Optimal Sampling Strategy (BOSS) that included cost constraints, habitat stratification, and optimization to provide a cost-effective alternative to other common monitoring designs. Our design provided similar habitat and spatial representation to habitat stratification and equal-probability spatially balanced designs, respectively. Not only was our design able to achieve the desired habitat representation and spatial balance necessary to meet our objectives, it was also significantly less expensive (1.3-2.6 times less) than the alternative designs we considered. To further balance trade-offs between cost and representativeness prior to field implementation, we ran multiple iterations of the BOSS design and selected the one which minimized predicted costs while maximizing a multi-criteria evaluation of representativeness. Field implementation of the design in three vastly different regions over three field seasons showed that the approach can be implemented in a wide variety of logistical scenarios and ecological conditions. We provide worked examples and scripts to allow our approach to be implemented or adapted elsewhere. We also provide recommendations for possible future refinements to our approach, but recommend that our design now be implemented to provide unbiased information to assess the status of boreal birds and inform conservation and management actions.


Subject(s)
Birds/physiology , Climate Change , Conservation of Natural Resources , Ecosystem , Animals , Humans , Population Dynamics , Seasons , Taiga
8.
PLoS One ; 13(2): e0191645, 2018.
Article in English | MEDLINE | ID: mdl-29414989

ABSTRACT

Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change") were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and anthropogenic disturbances under a changing climate. Management adaptations, including reduced harvesting levels and strategies to promote coniferous species content, may help mitigate these cumulative impacts.


Subject(s)
Climate Change , Ecosystem , Forests , Animals , Birds , Canada , Species Specificity
9.
J R Soc Interface ; 12(112)2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26538556

ABSTRACT

Large birds regularly use updrafts to subsidize flight. Although most research on soaring bird flight has focused on use of thermal updrafts, there is evidence suggesting that many species are likely to use multiple modes of subsidy. We tested the degree to which a large soaring species uses multiple modes of subsidy to provide insights into the decision-making that underlies flight behaviour. We statistically classified more than 22 000 global positioning satellite-global system for mobile communications telemetry points collected at 30-s intervals to identify the type of subsidized flight used by 32 migrating golden eagles during spring in eastern North America. Eagles used subsidized flight on 87% of their journey. They spent 41.9% ± 1.5 ([Formula: see text], range: 18-56%) of their subsidized northbound migration using thermal soaring, 45.2% ± 2.1 (12-65%) of time gliding between thermals, and 12.9% ± 2.2 (1-55%) of time using orographic updrafts. Golden eagles responded to the variable local-scale meteorological events they encountered by switching flight behaviour to take advantage of multiple modes of subsidy. Orographic soaring occurred more frequently in morning and evening, earlier in the migration season, and when crosswinds and tail winds were greatest. Switching between flight modes allowed migration for relatively longer periods each day and frequent switching behaviour has implications for a better understanding of avian flight behaviour and of the evolution of use of subsidy in flight.


Subject(s)
Eagles/physiology , Flight, Animal/physiology , Models, Biological , Animals
10.
PLoS One ; 9(11): e111546, 2014.
Article in English | MEDLINE | ID: mdl-25389754

ABSTRACT

Top predators and scavengers are vulnerable to pollutants, particularly those accumulated along the food chain. Lead accumulation can induce severe disorders and alter survival both in mammals (including humans) and in birds. A potential source of lead poisoning in wild animals, and especially in scavengers, results from the consumption of ammunition residues in the tissues of big game killed by hunters. For two consecutive years we quantified the level lead exposure in individuals of a sentinel scavenger species, the common raven (Corvus corax), captured during the moose (Alces alces) hunting season in eastern Quebec, Canada. The source of the lead contamination was also determined using stable isotope analyses. Finally, we identified the different scavenger species that could potentially be exposed to lead by installing automatic cameras targeting moose gut piles. Blood lead concentration in ravens increased over time, indicating lead accumulation over the moose-hunting season. Using a contamination threshold of 100 µg x L(-1), more than 50% of individuals were lead-contaminated during the moose hunting period. Lead concentration was twice as high in one year compared to the other, matching the number of rifle-shot moose in the area. Non-contaminated birds exhibited no ammunition isotope signatures. The isotope signature of the lead detected in contaminated ravens tended towards the signature from lead ammunition. We also found that black bears (Ursus americanus), golden eagles and bald eagles (Aquila chrysaetos and Haliaeetus leucocephalus, two species of conservation concern) scavenged heavily on moose viscera left by hunters. Our unequivocal results agree with other studies and further motivate the use of non-toxic ammunition for big game hunting.


Subject(s)
Animals, Wild , Lead Poisoning/etiology , Animals , Birds , Crows , Eagles , Environmental Monitoring , Food Chain , Isotopes/analysis , Lead/analysis , Lead/blood , Models, Statistical , Quebec , Ursidae
11.
Ecol Lett ; 15(2): 96-103, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22077120

ABSTRACT

Soaring birds migrate in massive numbers worldwide. These migrations are complex and dynamic phenomena, strongly influenced by meteorological conditions that produce thermal and orographic uplift as the birds traverse the landscape. Herein we report on how methods were developed to estimate the strength of thermal and orographic uplift using publicly available digital weather and topography datasets at continental scale. We apply these methods to contrast flight strategies of two morphologically similar but behaviourally different species: golden eagle, Aquila chrysaetos, and turkey vulture, Cathartes aura, during autumn migration across eastern North America tracked using GPS tags. We show that turkey vultures nearly exclusively used thermal lift, whereas golden eagles primarily use orographic lift during migration. It has not been shown previously that migration tracks are affected by species-specific specialisation to a particular uplift mode. The methods introduced herein to estimate uplift components and test for differences in weather use can be applied to study movement of any soaring species.


Subject(s)
Animal Migration/physiology , Birds/physiology , Eagles/physiology , Flight, Animal/physiology , Animals , Species Specificity , United States , Weather , Wind
SELECTION OF CITATIONS
SEARCH DETAIL