Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters








Database
Language
Publication year range
1.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38866486

ABSTRACT

We investigated sex differences in dopamine (DA) release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) using a chronic 16-channel carbon fiber electrode and fast-scan cyclic voltammetry (FSCV). Electrical stimulation-induced (ES; 60 Hz) DA release was recorded in the NAc of single- or pair-housed male and female rats. When core (NAcC) and shell (NAcS) were recorded simultaneously, there was greater ES DA release in NAcC of pair-housed females compared with single females and males. Housing did not affect ES NAc DA release in males. In contrast, there was significantly more ES DA release from the DLS of female rats than male rats. This was true prior to and after treatment with methamphetamine. Furthermore, in castrated (CAST) males and ovariectomized (OVX) females, there were no sex differences in ES DA release from the DLS, demonstrating the hormone dependence of this sex difference. However, in the DLS of both intact and gonadectomized rats, DA reuptake was slower in females than that in males. Finally, DA release following ES of the medial forebrain bundle at 60 Hz was studied over 4 weeks. ES DA release increased over time for both CAST males and OVX females, demonstrating sensitization. Using this novel 16-channel chronic FSCV electrode, we found sex differences in the effects of social housing in the NAcS, sex differences in DA release from intact rats in DLS, and sex differences in DA reuptake in DLS of intake and gonadectomized rats, and we report sensitization of ES-induced DA release in DLS in vivo.


Subject(s)
Corpus Striatum , Dopamine , Electric Stimulation , Nucleus Accumbens , Sex Characteristics , Animals , Male , Nucleus Accumbens/metabolism , Female , Dopamine/metabolism , Rats , Corpus Striatum/metabolism , Electric Stimulation/methods , Rats, Sprague-Dawley , Housing, Animal , Ovariectomy , Methamphetamine/pharmacology
2.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37645814

ABSTRACT

We investigated sex differences in dopamine (DA) release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) using a chronic 16-channel carbon fiber electrode and fast-scan cyclic voltammetry (FSCV). Electrical stimulation (ES; 60Hz) induced DA release was recorded in the NAc of single or pair-housed male and female rats. When core (NAcC) and shell (NAcS) were recorded simultaneously, there was greater ES DA release in NAcC of pair-housed females compared with single females and males. Housing did not affect ES NAc DA release in males. In contrast, there was significantly more ES DA release from the DLS of female rats than male rats. This was true prior to and after treatment with methamphetamine. Furthermore, in castrated (CAST) males and ovariectomized (OVX) females, there were no sex differences in ES DA release from the DLS, demonstrating the hormone dependence of this sex difference. However, in the DLS of both intact and gonadectomized rats, DA reuptake was slower in females than in males. Finally, DA release following ES of the medial forebrain bundle at 60Hz was studied over four weeks. ES DA release increased over time for both CAST males and OVX females, demonstrating sensitization. Using this novel 16-channel chronic FSCV electrode, we found sex differences in the effects of social housing in the NAcS, sex differences in DA release from intact rats in DLS, sex differences in DA reuptake in DLS of intake and gonadectomized rats, and we report sensitization of ES-induced DA release in DLS in vivo.

3.
Mol Psychiatry ; 27(9): 3864-3874, 2022 09.
Article in English | MEDLINE | ID: mdl-35595980

ABSTRACT

Nicotine intake, whether through tobacco smoking or e-cigarettes, remains a global health concern. An emerging preclinical literature indicates that parental nicotine exposure produces behavioral, physiological, and molecular changes in subsequent generations. However, the heritable effects of voluntary parental nicotine taking are unknown. Here, we show increased acquisition of nicotine taking in male and female offspring of sires that self-administered nicotine. In contrast, self-administration of sucrose and cocaine were unaltered in male and female offspring suggesting that the intergenerational effects of paternal nicotine taking may be reinforcer specific. Further characterization revealed memory deficits and increased anxiety-like behaviors in drug-naive male, but not female, offspring of nicotine-experienced sires. Using an unbiased, genome-wide approach, we discovered that these phenotypes were associated with decreased expression of Satb2, a transcription factor known to play important roles in synaptic plasticity and memory formation, in the hippocampus of nicotine-sired male offspring. This effect was sex-specific as no changes in Satb2 expression were found in nicotine-sired female offspring. Finally, increasing Satb2 levels in the hippocampus prevented the escalation of nicotine intake and rescued the memory deficits associated with paternal nicotine taking in male offspring. Collectively, these findings indicate that paternal nicotine taking produces heritable sex-specific molecular changes that promote addiction-like phenotypes and memory impairments in male offspring.


Subject(s)
Matrix Attachment Region Binding Proteins , Nicotine , Paternal Exposure , Transcription Factors , Female , Male , Hippocampus , Matrix Attachment Region Binding Proteins/genetics , Memory Disorders , Nicotine/adverse effects , Paternal Exposure/adverse effects , Phenotype , Transcription Factors/genetics , Animals
4.
Neuropharmacology ; 187: 108491, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33567305

ABSTRACT

This article reviews evidence for sex differences in vulnerability to addiction with an emphasis on the neural mechanisms underlying these differences. Sex differences in the way that the gonadal hormone, estradiol, interacts with the ascending telencephalic dopamine system results in sex differences in motivated behaviors, including drug-seeking. In rodents, repeated psychostimulant exposure enhances incentive sensitization to a greater extent in females than males. Estradiol increases females' motivation to attain psychostimulants and enhances the value of drug related cues, which ultimately increases their susceptibility towards spontaneous relapse. This, along with females' dampened ability to alter decisions regarding risky behaviors, enhances their vulnerability for escalation of drug use. In males, recent evidence suggests that estradiol may be protective against susceptibility towards drug-preference. Sex differences in the actions of estradiol are reviewed to provide a foundation for understanding how future research might enhance understanding of the mechanisms of sex differences in addiction-related behaviors, which are dependent on estradiol receptor (ER) subtype and the region of the brain they are acting in. A comprehensive review of the distribution of ERα, ERß, and GPER1 throughout the rodent brain are provided along with a discussion of the possible ways in which these patterns differentially regulate drug-taking between the sexes. The article concludes with a brief discussion of the actions of gonadal hormones on the circuitry of the stress system, including the hypothalamic pituitary adrenal axis and regulation of corticotropin-releasing factor. Sex differences in the stress system can also contribute to females' enhanced vulnerability towards addiction.


Subject(s)
Brain/metabolism , Estradiol/metabolism , Receptors, Estrogen/metabolism , Stress, Psychological/metabolism , Substance-Related Disorders/metabolism , Animals , Disease Susceptibility , Dopamine/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Female , Humans , Hypothalamo-Hypophyseal System/metabolism , Male , Mice , Pituitary-Adrenal System/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Reward , Rodentia , Sex Factors
5.
Neuropsychopharmacology ; 43(10): 2000-2008, 2018 09.
Article in English | MEDLINE | ID: mdl-29497166

ABSTRACT

Novel molecular targets are needed to develop new medications for the treatment of cocaine addiction. Here we investigated a role for glucagon-like peptide-1 (GLP-1) receptors in the reinstatement of cocaine-seeking behavior, an animal model of relapse. We showed that peripheral administration of the GLP-1 receptor agonist exendin-4 dose dependently reduced cocaine seeking in rats at doses that did not affect ad libitum food intake, meal patterns or body weight. We also demonstrated that systemic exendin-4 penetrated the brain where it putatively bound receptors on both neurons and astrocytes in the ventral tegmental area (VTA). The effects of systemic exendin-4 on cocaine reinstatement were attenuated in rats pretreated with intra-VTA infusions of the GLP-1 receptor antagonist exendin-(9-39), indicating that the suppressive effects of systemic exendin-4 on cocaine seeking were due, in part, to activation of GLP-1 receptors in the VTA. Consistent with these effects, infusions of exendin-4 directly into the VTA reduced cocaine seeking. Finally, extinction following cocaine self-administration was associated with decreased preproglucagon mRNA expression in the caudal brainstem. Thus, our study demonstrated a novel role for GLP-1 receptors in the reinstatement of cocaine-seeking behavior and identified behaviorally relevant doses of a GLP-1 receptor agonist that selectively reduced cocaine seeking and did not produce adverse effects.


Subject(s)
Anti-Obesity Agents/therapeutic use , Cocaine-Related Disorders/drug therapy , Drug-Seeking Behavior/drug effects , Exenatide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Ventral Tegmental Area/drug effects , Animals , Astrocytes/drug effects , Brain/metabolism , Cocaine-Related Disorders/psychology , Conditioning, Operant/drug effects , Dose-Response Relationship, Drug , Exenatide/administration & dosage , Exenatide/pharmacokinetics , Male , Neurons/drug effects , Proglucagon/biosynthesis , Proglucagon/genetics , Rats , Rats, Sprague-Dawley , Recurrence , Solitary Nucleus/drug effects , Solitary Nucleus/metabolism
6.
Neuropharmacology ; 123: 67-79, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28552704

ABSTRACT

Amylin is produced in the pancreas and the brain, and acts centrally to reduce feeding and body weight. Recent data show that amylin can act in the ventral tegmental area (VTA) to reduce palatable food intake and promote negative energy balance, but the behavioral mechanisms by which these effects occur are not fully understood. The ability of VTA amylin signaling to reduce intake of specific palatable macronutrients (fat or carbohydrate) was tested in rats in several paradigms, including one-bottle acceptance tests, two-bottle choice tests, and a free-choice diet. Data show that VTA amylin receptor activation with the amylin receptor agonist salmon calcitonin (sCT) preferentially and potently reduces intake of fat, with more variable suppression of sucrose intake. Intake of a non-nutritive sweetener is also decreased by intra-VTA administration of sCT. As several feeding-related signals that act in the mesolimbic system also impact motivated behaviors besides feeding, we tested the hypothesis that the suppressive effects of amylin signaling in the VTA extend to other motivationally relevant stimuli. Results show that intra-VTA sCT reduces water intake in response to central administration of the dipsogenic peptide angiotensin II, but has no effect on ad libitum water intake in the absence of food. Importantly, open field and social interaction studies show that VTA amylin signaling does not produce anxiety-like behaviors. Collectively, these findings reveal a novel ability of VTA amylin receptor activation to alter palatable macronutrient intake, and also demonstrate a broader role of VTA amylin signaling for the control of motivated ingestive behaviors beyond feeding.


Subject(s)
Amylin Receptor Agonists/pharmacology , Calcitonin/pharmacology , Feeding Behavior/drug effects , Ventral Tegmental Area/drug effects , Angiotensin II/pharmacology , Animals , Anxiety , Choice Behavior/drug effects , Dietary Carbohydrates , Dietary Fats , Dietary Sucrose , Drinking Water , Male , Rats, Sprague-Dawley , Receptors, Islet Amyloid Polypeptide/metabolism , Saccharin , Salmon , Ventral Tegmental Area/metabolism
7.
Biol Psychiatry ; 82(11): 828-838, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28237459

ABSTRACT

BACKGROUND: The pancreatic- and brain-derived hormone amylin promotes negative energy balance and is receiving increasing attention as a promising obesity therapeutic. However, the neurobiological substrates mediating amylin's effects are not fully characterized. We postulated that amylin acts in the lateral dorsal tegmental nucleus (LDTg), an understudied neural processing hub for reward and homeostatic feeding signals. METHODS: We used immunohistochemical and quantitative polymerase chain reaction analyses to examine expression of the amylin receptor complex in rat LDTg tissue. Behavioral experiments were performed to examine the mechanisms underlying the hypophagic effects of amylin receptor activation in the LDTg. RESULTS: Immunohistochemical and quantitative polymerase chain reaction analyses show expression of the amylin receptor complex in the LDTg. Activation of LDTg amylin receptors by the agonist salmon calcitonin dose-dependently reduces body weight, food intake, and motivated feeding behaviors. Acute pharmacological studies and longer-term adeno-associated viral knockdown experiments indicate that LDTg amylin receptor signaling is physiologically and potentially preclinically relevant for energy balance control. Finally, immunohistochemical data indicate that LDTg amylin receptors are expressed on gamma-aminobutyric acidergic neurons, and behavioral results suggest that local gamma-aminobutyric acid receptor signaling mediates the hypophagia after LDTg amylin receptor activation. CONCLUSIONS: These findings identify the LDTg as a novel nucleus with therapeutic potential in mediating amylin's effects on energy balance through gamma-aminobutyric acid receptor signaling.


Subject(s)
Amylin Receptor Agonists/therapeutic use , Gene Expression Regulation/drug effects , Islet Amyloid Polypeptide/pharmacology , Signal Transduction/physiology , Ventral Tegmental Area/drug effects , gamma-Aminobutyric Acid/metabolism , Animals , Body Weight/drug effects , Body Weight/physiology , Calcitonin/pharmacology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Eating/drug effects , Food Preferences/drug effects , GABA Agents/pharmacology , Male , Motivation/drug effects , Peptide Fragments/pharmacology , Phosphopyruvate Hydratase/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Receptor Activity-Modifying Proteins/genetics , Receptor Activity-Modifying Proteins/metabolism , Receptors, Islet Amyloid Polypeptide/antagonists & inhibitors , Receptors, Islet Amyloid Polypeptide/genetics , Receptors, Islet Amyloid Polypeptide/metabolism , Signal Transduction/drug effects
8.
Neuropsychopharmacology ; 42(7): 1471-1479, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27782127

ABSTRACT

Alhough the glucagon-like peptide-1 (GLP-1) system is critical to energy balance control and is a target for obesity pharmacotherapies, the receptor-population-mediating effects of endogenous GLP-1 signaling are not fully understood. To address this, we developed a novel adeno-associated virus (AAV-GLP-1R) that utilizes short hairpin RNA to chronically knock down GLP-1 receptors (GLP-1R) in rats. As pharmacological studies highlight the hindbrain nucleus tractus solitarius (NTS) as a brain region important for GLP-1R-mediated effects on energy balance, AAV-GLP-1R was injected into the NTS to examine the role of endogenous NTS GLP-1R signaling in energy balance control. Chow intake and meal size were significantly increased following chronic NTS GLP-1R knockdown. In addition, NTS GLP-1R knockdown significantly increased self-administration of palatable food under both fixed and progressive ratio schedules of reinforcement. Collectively, these data demonstrate that endogenous NTS GLP-1R signaling is required for the control of food intake and motivation to feed, and provide a new strategy to investigate the importance of distinct GLP-1R populations in the control of a variety of functions.


Subject(s)
Eating/physiology , Glucagon-Like Peptide-1 Receptor/biosynthesis , Motivation/physiology , Signal Transduction/physiology , Solitary Nucleus/metabolism , Adenoviridae , Animals , Conditioning, Operant/physiology , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Male , Rats , Rats, Sprague-Dawley , Self Administration
9.
Am J Physiol Regul Integr Comp Physiol ; 306(3): R157-63, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24352410

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is an incretin hormone released from intestinal L-cells in response to food entering into the gastrointestinal tract. GLP-1-based pharmaceuticals improve blood glucose regulation and may hold promise for obesity treatment, as GLP-1 drugs reduce food intake and body weight in humans and animals. In an effort to improve GLP-1 pharmacotherapies, we focused our attention on macronutrients that, when present in the gastrointestinal tract, may enhance GLP-1 secretion and improve glycemic regulation and food intake suppression when combined with systemic administration of sitagliptin, a pharmacological inhibitor of DPP-IV (enzyme responsible for GLP-1 degradation). In particular, previous data suggest that specific macronutrient constituents found in dairy foods may act as potent secretagogues for GLP-1 and therefore may potentially serve as an adjunct dietary therapy in combination with sitagliptin. To directly test this hypothesis, rats received intraperitoneal injections of sitagliptin (6 mg/kg) or saline vehicle followed by intraduodenal infusions of either milk protein concentrate (MPC; 80/20% casein/whey; 4 kcal), soy protein (nondairy control infusate; 4 kcal), or 0.9% NaCl. Food intake was assessed 30 min postinfusion. In separate studies, regulation of blood glucose was examined via a 2-h oral glucose tolerance test (2 g/kg) following identical sitagliptin treatment and intraduodenal nutrient infusions. Collectively, results show that intraduodenal MPC, but not soy protein, significantly enhances both the food intake suppression and improved control of blood glucose produced by sitagliptin. These data support the hypothesis that dietary intake of dairy protein may be beneficial as an adjunct behavioral therapy to enhance the glycemic and food intake suppressive effects of GLP-1-based pharmacotherapies.


Subject(s)
Blood Glucose/drug effects , Dipeptidyl Peptidase 4/drug effects , Eating , Glucagon-Like Peptide 1/drug effects , Hypoglycemic Agents/therapeutic use , Milk Proteins/metabolism , Pyrazines/therapeutic use , Triazoles/therapeutic use , Animals , Blood Glucose/metabolism , Dipeptidyl Peptidase 4/metabolism , Eating/drug effects , Eating/physiology , Glucagon-Like Peptide 1/metabolism , Male , Obesity/drug therapy , Rats , Rats, Sprague-Dawley , Sitagliptin Phosphate
SELECTION OF CITATIONS
SEARCH DETAIL