Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Emerg Infect Dis ; 30(7): 1361-1373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861554

ABSTRACT

In March 2024, the US Department of Agriculture's Animal and Plant Health Inspection Service reported detection of highly pathogenic avian influenza (HPAI) A(H5N1) virus in dairy cattle in the United States for the first time. One factor that determines susceptibility to HPAI H5N1 infection is the presence of specific virus receptors on host cells; however, little is known about the distribution of the sialic acid (SA) receptors in dairy cattle, particularly in mammary glands. We compared the distribution of SA receptors in the respiratory tract and mammary gland of dairy cattle naturally infected with HPAI H5N1. The respiratory and mammary glands of HPAI H5N1-infected dairy cattle are rich in SA, particularly avian influenza virus-specific SA α2,3-gal. Mammary gland tissues co-stained with sialic acids and influenza A virus nucleoprotein showed predominant co-localization with the virus and SA α2,3-gal. HPAI H5N1 exhibited epitheliotropism within the mammary gland, and we observed rare immunolabeling within macrophages.


Subject(s)
Influenza A Virus, H5N1 Subtype , Mammary Glands, Animal , Orthomyxoviridae Infections , Receptors, Cell Surface , Animals , Cattle , Mammary Glands, Animal/virology , Female , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Receptors, Cell Surface/metabolism , Cattle Diseases/virology , Dairying , N-Acetylneuraminic Acid/metabolism , Receptors, Virus/metabolism , Influenza in Birds/virology
2.
Poult Sci ; 103(2): 103332, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128459

ABSTRACT

In late 2020, an outbreak of Tembusu virus (TMUV)-associated disease occurred in a 45-day-old white Roman geese flock in Taiwan. Here, we present the identification and isolation of a novel goose-origin TMUV strain designated as NTU/C225/2020. The virus was successfully isolated using minimal-pathogen-free duck embryos. Phylogenetic analysis of the polyprotein gene showed that NTU/C225/2020 clustered together with the earliest isolates from Malaysia and was most closely related to the first Taiwanese TMUV strain, TP1906. Genomic analysis revealed significant amino acid variations among TMUV isolates in NS1 and NS2A protein regions. In the present study, we characterized the NTU/C225/2020 culture in duck embryos, chicken embryos, primary duck embryonated fibroblasts, and DF-1 cells. All host systems were susceptible to NTU/C225/2020 infection, with observable lesions. In addition, animal experiments showed that the intramuscular inoculation of NTU/C225/2020 resulted in growth retardation and hyperthermia in day-old chicks. Gross lesions in the infected chicks included hepatomegaly, hyperemic thymus, and splenomegaly. Viral loads and histopathological damage were displayed in various tissues of both inoculated and naïve co-housed chicks, confirming the direct chick-to-chick contact transmission of TMUV. This is the first in vivo study of a local TMUV strain in Taiwan. Our findings provide essential information for TMUV propagation and suggest a potential risk of disease outbreak in chicken populations.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Chick Embryo , Animals , Flavivirus Infections/veterinary , Geese , Chickens , Phylogeny , Virulence , Cetuximab , Poultry Diseases/pathology , Ducks
SELECTION OF CITATIONS
SEARCH DETAIL