Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Article in English | MEDLINE | ID: mdl-38857372

ABSTRACT

STUDY DESIGN: Multicenter, prospective registry study. OBJECTIVE: To clarify minimal clinically important differences (MCIDs) for surgical interventions for spinal metastases, thereby enhancing patient care by integrating quality of life (QoL) assessments with clinical outcomes. SUMMARY OF BACKGROUND DATA: Despite its proven usefulness in degenerative spinal diseases and deformities, the MCID remains unexplored regarding surgery for spinal metastases. METHODS: This study included 171 (out of 413) patients from the multicenter "Prospective Registration Study on Surgery for Metastatic Spinal Tumors" by the Japan Association of Spine Surgeons. These were evaluated preoperatively and at 6 months postoperatively using the Face scale, EuroQol-5 Dimensions-5 Levels (EQ-5D-5L), including the visual analog scale (VAS), and performance status. The MCIDs were calculated using an anchor-based method, classifying participants into the improved, unchanged, and deteriorated groups based on the Face scale scores. Focusing on the improved and unchanged groups, the change in the EQ-5D-5L values from before to after treatment was analyzed, and the cutoff value with the highest sensitivity and specificity was determined as the MCID through receiver operating characteristic curve analysis. The validity of the MCIDs was evaluated using a distribution-based calculation method for patient-reported outcomes. RESULTS: The improved, unchanged, and deteriorated groups comprised 121, 28, and 22 participants, respectively. The anchor-based MCIDs for the EQ-5D-5L index, EQ-VAS, and domains of mobility, self-care, usual activities, pain/discomfort, and anxiety/depression were 0.21, 15.50, 1.50, 0.50, 0.50, 0.50, and 0.50, respectively; the corresponding distribution-based MCIDs were 0.17, 15,99, 0.77, 0.80, 0.78, 0.60, and 0.70, respectively. CONCLUSION: We identified MCIDs for surgical treatment of spinal metastases, providing benchmarks for future clinical research. By retrospectively examining whether the MCIDs are achieved, factors favoring their achievement and risks affecting them can be explored. This could aid in decisions on surgical candidacy and patient counseling.

2.
Medicina (Kaunas) ; 60(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38674165

ABSTRACT

Objectives: To investigate the outcomes of early balloon kyphoplasty (BKP) intervention compared with late intervention for osteoporotic vertebral fracture (OVF). Background: Osteoporotic vertebral fracture can lead to kyphotic deformity, severe back pain, depression, and disturbances in activities of daily living (ADL). Balloon kyphoplasty has been widely utilized to treat symptomatic OVFs and has proven to be a very effective surgical option for this condition. Furthermore, BKP is relatively a safe and effective method due to its reduced acrylic cement leakage and greater kyphosis correction. Materials and Methods: A retrospective cohort study was conducted at our hospital for patients who underwent BKP for osteoporotic vertebral fractures in the time frame between January 2020 and December 2022. Ninety-nine patients were included in this study, and they were classified into two groups: in total, 36 patients underwent early BKP intervention (EI) at <4 weeks, and 63 patients underwent late BKP intervention (LI) at ≥4 weeks. We performed a clinical, radiological and statistical comparative evaluation for the both groups with a mean follow-up of one year. Results: Adjacent segmental fractures were more frequently observed in the LI group compared to the EI group (33.3% vs. 13.9%, p = 0.034). There was a significant improvement in postoperative vertebral angles in both groups (p = 0.036). The cement volume injected was 7.42 mL in the EI, compared with 6.3 mL in the LI (p = 0.007). The mean surgery time was shorter in the EI, at 30.2 min, compared with 37.1 min for the LI, presenting a significant difference (p = 0.0004). There was no statistical difference in the pain visual analog scale (VAS) between the two groups (p = 0.711), and there was no statistical difference in cement leakage (p = 0.192). Conclusions/Level of Evidence: Early BKP for OVF treatment may achieve better outcomes and fewer adjacent segmental fractures than delayed intervention.


Subject(s)
Kyphoplasty , Osteoporotic Fractures , Spinal Fractures , Humans , Kyphoplasty/methods , Retrospective Studies , Male , Female , Aged , Osteoporotic Fractures/surgery , Spinal Fractures/surgery , Aged, 80 and over , Treatment Outcome , Middle Aged , Cohort Studies , Time Factors
3.
Medicina (Kaunas) ; 60(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674263

ABSTRACT

Objectives and Background: To present a novel technique of treatment for a patient with basilar invagination. Basilar invagination (BI) is a congenital condition that can compress the cervicomedullary junction, leading to neurological deficits. Severe cases require surgical intervention, but there is debate over the choice of approach. The anterior approach allows direct decompression but carries high complication rates, while the posterior approach provides indirect decompression and offers good stability with fewer complications. Materials and Methods: A 15-year-old boy with severe myelopathy presented to our hospital with neck pain, bilateral upper limb muscle weakness, and hand numbness persisting for 4 years. Additionally, he experienced increased numbness and gait disturbance three months before his visit. On examination, he exhibited hyperreflexia in both upper and lower limbs, muscle weakness in the bilateral upper limbs (MMT 4), bilateral hypoesthesia below the elbow and in both legs, mild urinary and bowel incontinence, and a spastic gait. Radiographs revealed severe basilar invagination (BI). Preoperative images showed severe BI and that the spinal cord was severely compressed with odontoid process. Results: The patient underwent posterior surgery with the C-arm free technique. All screws including occipital screws were inserted into the adequate position under navigation guidance. Reduction was achieved with skull rotation and distraction. A follow-up at one year showed the following results: Manual muscle testing results and sensory function tests showed almost full recovery, with bilateral arm recovery (MMT 5) and smooth walking. The cervical Japanese Orthopedic Association score of the patient improved from 9/17 to 16/17. Postoperative images showed excellent spinal cord decompression, and no major or severe complications had occurred. Conclusions: Basilar invagination alongside Klippel-Feil syndrome represents a relatively uncommon condition. Utilizing a posterior approach for treating reducible BI with a C-arm-free technique proved to be a safe method in addressing severe myelopathy. This novel navigation technique yields excellent outcomes for patients with BI.


Subject(s)
Decompression, Surgical , Klippel-Feil Syndrome , Humans , Male , Adolescent , Klippel-Feil Syndrome/complications , Klippel-Feil Syndrome/surgery , Decompression, Surgical/methods , Platybasia/complications , Platybasia/surgery , Treatment Outcome , Spinal Cord Compression/surgery , Spinal Cord Compression/etiology
4.
PLoS One ; 19(2): e0298292, 2024.
Article in English | MEDLINE | ID: mdl-38377118

ABSTRACT

Bone and soft-tissue sarcomas are rare malignancies with histological diversity and tumor heterogeneity, leading to the lack of a common molecular target. Telomerase is a key enzyme for keeping the telomere length and human telomerase reverse transcriptase (hTERT) expression is often activated in most human cancers, including bone and soft-tissue sarcomas. For targeting of telomerase-positive tumor cells, we developed OBP-301, a telomerase-specific replication-competent oncolytic adenovirus, in which the hTERT promoter regulates adenoviral E1 gene for tumor-specific viral replication. In this study, we present the diagnostic potential of green fluorescent protein (GFP)-expressing oncolytic adenovirus OBP-401 for assessing virotherapy sensitivity using bone and soft-tissue sarcomas. OBP-401-mediated GFP expression was significantly associated with the therapeutic efficacy of OBP-401 in human bone and soft-tissue sarcomas. In the tumor specimens from 68 patients, malignant and intermediate tumors demonstrated significantly higher expression levels of coxsackie and adenovirus receptor (CAR) and hTERT than benign tumors. OBP-401-mediated GFP expression was significantly increased in malignant and intermediate tumors with high expression levels of CAR and hTERT between 24 and 48 h after infection. Our results suggest that the OBP-401-based GFP expression system is a useful tool for predicting the therapeutic efficacy of oncolytic virotherapy on bone and soft-tissue sarcomas.


Subject(s)
Adenoviridae Infections , Oncolytic Virotherapy , Sarcoma , Soft Tissue Neoplasms , Telomerase , Humans , Adenoviridae/physiology , Telomerase/genetics , Telomerase/metabolism , Fluorescence , Oncolytic Virotherapy/methods , Sarcoma/therapy , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Cell Line, Tumor
5.
Medicina (Kaunas) ; 59(12)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38138219

ABSTRACT

Background and Objectives: The implementation of intraoperative imaging in the procedures performed under the guidance of the same finds its history dating back to the early 1990s. This practice was abandoned due to many deficits and practicality. Later, fluoroscopy-dependent techniques were developed and have been used even in the present time, albeit with several disadvantages. With the recent advancement of several complex surgical techniques, which demand higher accuracy and are in conjunction with the existence of radiation exposure hazard, C-arm-free techniques were introduced. In this review study, we aim to demonstrate the various types of these techniques performed in our hospital. Materials and Methods: We have retrospectively analyzed and collected imaging data of C-arm-free, minimally invasive techniques performed in our hospital. The basic steps of the procedures are described, following with a discussion, along with the literature of findings, enlisting the merits and demerits. Results: MIS techniques of the thoracolumbar and lumbar spine that do not require the use of the C-arm can offer excellent results with high precision. However, several disadvantages may prevail in certain circumstances such as the navigation accuracy problem where in the possibility of perioperative complications comes a high morbidity rate. Conclusions: The accustomedness of performing these techniques requires a steep learning curve. The increase in accuracy and the decrease in radiation exposure in complex spinal surgery can overcome the burden hazards and can prove to be cost-effective.


Subject(s)
Lumbar Vertebrae , Radiation Exposure , Humans , Retrospective Studies , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Neurosurgical Procedures/methods , Minimally Invasive Surgical Procedures/methods
6.
Medicina (Kaunas) ; 59(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37241070

ABSTRACT

Background and Objectives: Adult spinal deformity (ASD) surgery, L5-S1 lordosis is very important factor. The main objective of the research is to retrospectively compare symptomatic presentation and radiological presentation in the sequelae of oblique lumbar inter-body spinal fusion at L5-S1 (OLIF51) and transforaminal lumbar interbody fusion (TLIF) for ASD. Materials and Methods: We retrospectively evaluated 54 patients who underwent corrective spinal fusion for ASD between October 2019 and January 2021. Thirteen patients underwent OLIF51 (average 74.6 years old, group O) and 41 patients underwent TLIF51 (average 70.5 years old, group T). Mean follow-up period was 23.9 months for group O and 28.9 months for group T, ranging from 12 to 43 months. Clinical and radiographic outcomes are assessed using values including visual analogue scale (VAS) for back pain and Oswestry disability index (ODI). Radiographic evaluation was also collected preoperatively and at 6, 12, and 24 months postoperatively. Results: Surgical time in group O was less than that in group T (356 min vs. 492 min, p = 0.003). However, intraoperative blood loss of both groups were not significantly different (1016 mL vs. 1252 mL, p = 0.274). Changes in VAS and ODI were similar in both groups. L5-S1 angle gain and L5-S1 height gain in group O were significantly better than those of group T (9.4° vs. 1.6°, p = 0.0001, 4.2 mm vs. 0.8 mm, p = 0.0002). Conclusions: Clinical outcomes were not significantly different in both groups, but surgical time in OLIF51 was significantly less than that in TLIF51. The radiographic outcomes showed that OLIF51 created more L5-S1 lordosis and L5-S1 disc height compared with TLIF 51.


Subject(s)
Lordosis , Spinal Fusion , Humans , Adult , Aged , Lordosis/surgery , Retrospective Studies , Lumbar Vertebrae/surgery , Treatment Outcome
7.
Medicina (Kaunas) ; 60(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38256281

ABSTRACT

Background and Objectives: To present a new spinal shortening technique for tethered cord syndrome. Tethered cord syndrome (TCS) is a debilitating condition leading to progressive neurological decline. Surgical detethering for TCS is the gold standard of treatment. However, symptomatic retethering of TCS has been reported in 5%-50% of patients after initial release. To solve this problem, posterior spinal shortening osteotomy has been reported. This technique has risks of massive blood loss and neurological deterioration. The authors hereby report a new safe spinal shortening technique for tethered cord syndrome. Materials and Methods: A 31-year-old man with gait disturbance was referred to our hospital. After the delivery of treatment, he underwent surgical untethering of the spinal cord in another hospital. He had hyperreflexia of the Achilles tendon reflex and bilateral muscle weakness of the legs (MMT 3-4). He also had urinary and bowel incontinence, and total sensory loss below L5. An anteroposterior lumbar radiogram indicated partial laminectomy of L3 and L4. Lumbar MRI showed retethering of spinal cord. Results: The patient underwent a new spinal shortening technique for tethered cord syndrome under the guidance of O-arm navigation. First, from the anterior approach, disectomy from T12 to L3 was performed. Second, from the posterior approach, Ponte osteotomy was performed from T12 to L3, shortening the spinal column by 15 mm. The patient was successfully treated surgically. Postoperative lumbar MRI showed that the tension of the spinal cord was released. Manual muscle testing results and the sensory function of the left leg had recovered almost fully upon final follow-up at one year. Conclusions: A retethered spinal cord after initial untethering is difficult to treat. This new spinal shortening technique can represent another good option to release the tension of the spinal cord.


Subject(s)
Imaging, Three-Dimensional , Surgery, Computer-Assisted , Male , Humans , Adult , Tomography, X-Ray Computed , Spine , Spinal Cord
8.
Acta Med Okayama ; 76(6): 743-748, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36549778

ABSTRACT

We describe a floating technique via a posterolateral approach with intraoperative O-arm navigation to facilitate decompression of the spinal cord in thoracic myelopathy due to severe ossification of the posterior longitudinal ligament (OPLL). A 62-year-old man with myelopathy due to thoracic OPLL had left-leg muscle weakness, urinary disturbance, and spastic gait. Bilateral leg pain and gait disturbance had persisted for 2 years. He was successfully treated by the posterolateral OPLL floating procedure and posterior pedicle fixation under O-arm navigation. At a 2-year follow-up, manual muscle testing results and sensory function of the left leg had recovered fully. His cervical Japanese Orthopedic Association score had improved from 5/12 to 11/12. The novel intraoperative O-arm navigation-guided posterolateral floating procedure for thoracic OPLL is effective for achieving precise decompression and strong fixation with a posterior approach only and can provide an excellent result for severe thoracic OPLL without the risk of adverse events from intraoperative radiation.


Subject(s)
Ossification of Posterior Longitudinal Ligament , Spinal Cord Diseases , Spinal Fusion , Surgery, Computer-Assisted , Male , Humans , Middle Aged , Longitudinal Ligaments/surgery , Treatment Outcome , Osteogenesis , Imaging, Three-Dimensional , Decompression, Surgical/methods , Spinal Fusion/methods , Tomography, X-Ray Computed/methods , Spinal Cord Diseases/etiology , Spinal Cord Diseases/surgery , Ossification of Posterior Longitudinal Ligament/surgery , Ossification of Posterior Longitudinal Ligament/etiology , Thoracic Vertebrae/surgery
9.
J Vis Exp ; (187)2022 09 16.
Article in English | MEDLINE | ID: mdl-36190247

ABSTRACT

Oblique lumbar interbody fusion (OLIF) is an established technique for the indirect decompression of lumbar canal stenosis. However, OLIF at the L5-S1 level (OLIF51) is technically difficult because of the anatomical structures. We present a novel simultaneous technique of OLIF51 with percutaneous pedicle screw fixation without fluoroscopy. The patient is placed in a right lateral decubitus position. A percutaneous reference pin is inserted into the right sacroiliac joint. An O-arm scan is performed, and 3D reconstructed images are transmitted to the spinal navigation system. A 4 cm oblique skin incision is made under navigation guidance along the pelvis. The internal/external and transverse abdominal muscles are divided along the muscle fibers, protecting the iliohypogastric and ilioinguinal nerves. Using a retroperitoneal approach, the left common iliac vessels are identified. Special muscle retractors with illumination are used to expose the L5-S1 intervertebral disc. After disc preparation with navigated instruments, the disc space is distracted with navigated trials. Autogenous bone and demineralized bone material are then inserted into the cage hole. The OLIF51 cage is inserted into the disc space with the help of a mallet. Simultaneously, percutaneous pedicle screws are inserted by another surgeon without changing the lateral decubitus position of the patient. In conclusion, C-arm-free OLIF51 and simultaneous percutaneous pedicle screw fixation are performed in a lateral position under navigation guidance. This novel technique reduces surgical time and radiation hazards.


Subject(s)
Pedicle Screws , Spinal Fusion , Surgery, Computer-Assisted , Humans , Imaging, Three-Dimensional , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Surgery, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
10.
J Vis Exp ; (188)2022 10 14.
Article in English | MEDLINE | ID: mdl-36314789

ABSTRACT

We report a novel technique for C-arm free transtubular L5 nerve decompression under CT-based navigation to reduce the radiation hazard. This procedure is performed under general anesthesia and neuromonitoring. The patient is placed in a prone position on an operating carbon table. A navigation reference frame is placed percutaneously into the contralateral sacroiliac joint or spinous process. Then, CT scan images are obtained. After instrument registration, the L5-S1 foraminal level is confirmed with a navigated probe, and the entry point is marked. Using an approximately 2 cm skin incision, the subcutaneous tissue and muscles are dissected. The navigated first dilator is aimed at the L5-S1 Kambin's triangle, and sequential dilation is performed. The 18 mm tube is used and fixed to the frame. The bone around the Kambin's triangle is removed with a navigated burr. For lateral disc herniation, the L5 nerve root is identified and retracted, and the disc fragment is removed. The navigation-guided tubular endoscopic decompression is an effective procedure. There is no radiation hazard to the surgeon or the operating room staff.


Subject(s)
Intervertebral Disc Displacement , Humans , Intervertebral Disc Displacement/surgery , Lumbar Vertebrae/surgery , Decompression, Surgical/methods , Lumbosacral Region/surgery , Endoscopy/methods
11.
Medicina (Kaunas) ; 58(5)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35629982

ABSTRACT

Background and Objectives: Spine surgery using a percutaneous pedicle screw placement (PPSP) is widely implemented for spinal trauma. However, percutaneous systems have been reported to have weak screw-rod connections. In this study, conventional open and percutaneous systems were biomechanically evaluated and compared. Material and Methods: The experiments were performed in two stages: the first stage was a break test, whereas the second stage was a fatigue test. Four systems were used for the experiments. System 1 was intended for conventional open surgery (titanium rod with a 6.0 mm diameter, using a clamp connecting mechanism). System 2 was a percutaneous pedicle screw (PPS) system for trauma (titanium alloy rod with a 6.0 mm diameter, using ball ring connections). System 3 was a PPS system for trauma (cobalt-chromium alloy rod with a 6.0 mm diameter, using sagittal adjusting screw connections). System 4 was a general-purpose PPS system (titanium alloy rod with a 5.5 mm diameter, using a mechanism where the adapter in the head holds down the screw). Results: Stiffness values of 54.8 N/mm, 43.1 N/mm, 90.9 N/mm, and 39.3 N/mm were reported for systems 1, 2, 3, and 4, respectively. The average number of load cycles in the fatigue test was 134,393, 40,980, 1,550,389, and 147,724 for systems 1 to 4, respectively. At the end of the test, the displacements were 0.2 mm, 16.9 mm, 1.2 mm, and 8.6 mm, respectively. System 1, with a locking mechanism, showed the least displacement at the end of the test. Conclusion: A few PPS systems showed better results in terms on stiffness and life than the open system. The experiments showed that mechanical strength varies depending on the spinal implant. The experiments conducted are essential and significant to provide the mechanical strength required for surgical reconstruction.


Subject(s)
Pedicle Screws , Spinal Fusion , Alloys , Humans , Spinal Fusion/methods , Titanium
12.
Medicina (Kaunas) ; 58(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35630021

ABSTRACT

Background and Objectives: Thoracolumbar kyphosis is one of the most frequent skeletal manifestations in patients with achondroplasia. Few papers have been published on the surgical treatment of this condition, especially in skeletally mature patients. With this study, we presented a retrospective case series of long-term surgical results for achondroplastic patients with severe thoracolumbar kyphosis. This study was conducted to evaluate the outcome of surgical treatment for thoracolumbar kyphosis in patients associated with achondroplasia presenting with paraparesis. Materials and Methods: Three patients with achondroplasia who developed neurologic deficits due to severe thoracolumbar kyphosis and underwent surgical treatment were evaluated (mean age 22.3 years; mean follow-up 9.3 years). All patients were treated with posterior vertebral column resection (p-VCR) of hypoplastic apical vertebrae with a cage and segmental instrumentation. Neurologic outcomes (JOA scores), correction of kyphosis, and operative complications were assessed. Results: All patients had back pain, neurological deficits, and urinary disturbance before surgery. The average preoperative JOA score was 8.3/11 points, which was improved to 10.7/11 points at the final follow-up (mean recovery rate 83%). All patients obtained neurologic improvement after surgery. The mean preoperative kyphotic angle was 117° (range 103°-126°). The postoperative angles averaged 37° (range 14°-57°), resulting in a mean correction rate of 67%. All patients had postoperative complications such as rod breakage and/or surgical site infection. Conclusions: The long-term results of p-VCR were acceptable for treating thoracolumbar kyphosis in patients with achondroplasia. To perform this p-VCR safely, spinal navigation and neuromonitoring are inevitable when resecting non anatomical fused vertebrae and ensuring correct pedicle screw insertion. However, surgical complications such as rod breakage and surgical site infection may occur at a high rate, making informed consent very important when surgery is indicated.


Subject(s)
Achondroplasia , Kyphosis , Spinal Fusion , Achondroplasia/complications , Achondroplasia/surgery , Adult , Humans , Kyphosis/complications , Kyphosis/surgery , Lumbar Vertebrae/surgery , Retrospective Studies , Spinal Fusion/methods , Surgical Wound Infection , Thoracic Vertebrae/surgery , Treatment Outcome , Young Adult
13.
BMC Surg ; 22(1): 172, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35546229

ABSTRACT

BACKGROUND: Symptomatic pseudarthrosis and cage migration/protrusion are difficult complications of transforaminal or posterior lumbar interbody fusion (TLIF/PLIF). If the patient experiences severe radicular symptoms due to cage protrusion, removal of the migrated cage is necessary. However, this procedure is sometimes very challenging because epidural adhesions and fibrous union can be present between the cage and vertebrae. We describe a novel classification and technique utilizing a navigated osteotome and the oblique lumbar interbody fusion at L5/S1 (OLIF51) technique to address this problem. METHODS: This retrospective study investigated consecutive patients with degenerative lumbar diseases who underwent TLIF/PLIF. Symptomatic cage migration was evaluated by direct examination, radiography, and/or computed tomography (CT) at 1, 3, 6, 12, and 24 months of follow-up. Cage migration/protrusion was defined as symptomatic cage protrusion > 5 mm from the posterior border of the over and underlying vertebral body compared with initial CT. We evaluated patient characteristics including body mass index, smoking history, fusion level, and cage type. A total of 113 patients underwent PLIF/TLIF (PLIF n = 30, TLIF n = 83), with a mean age of 71.1 years (range, 28-87 years). Mean duration of follow-up was 25 months (range, 12-47 months). RESULTS: Cage migration was identified in 5 of 113 patients (4.4%). All cases of symptomatic cage migration involved the L5/S1 level and the TLIF procedure. Risk factors for cage protrusion were age (younger), sex (male), and level (L5/S1). The mean duration to onset of cage protrusion was 3.2 months (range, 2-6 months). We applied a new classification for cage protrusion: type 1, only low back pain without new radicular symptoms; type 2, low back pain with minor radicular symptoms; or type 3, cauda equina syndrome and/or severe radicular symptoms. According to our classification, one patient was in type 1, three patients were in type 2, and one patient was in type 3. For all cases of cage migration, revision surgery was performed using a navigated high-speed burr and osteotome, and the patient in group 1 underwent additional PLIF without removal of the protruding cage. Three revision surgeries (group 2) involved removal of the protruding cage and PLIF, and one revision surgery (group 3) involved anterior removal of the cage and OLIF51 fusion. CONCLUSIONS: The navigated high-speed burr, navigated osteotome, and OLIF51 technique appear very useful for removing a cage with fibrous union from the disc in patients with pseudarthrosis. This new technique makes revision surgery after cage migration much safer, and more effective. This technique also reduces the need for fluoroscopy.


Subject(s)
Low Back Pain , Pseudarthrosis , Spinal Fusion , Aged , Humans , Low Back Pain/etiology , Lumbar Vertebrae/surgery , Male , Pseudarthrosis/etiology , Pseudarthrosis/surgery , Reoperation/methods , Retrospective Studies , Spinal Fusion/methods , Treatment Outcome
14.
Acta Med Okayama ; 76(1): 71-78, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35237001

ABSTRACT

The surgical treatment of pediatric atlantoaxial subluxation (AAS) in Down syndrome (DS) remains technically challenging due to radiation exposure and complications such as vertebral artery injury and nonunion. The established treatment is fixation with a C1 lateral mass screw and C2 pedicle screw (modified Goel technique). However, this technique requires fluoroscopy for C1 screw insertion. To avoid exposing the operating team to radiation we present here a new C-arm free O-arm navigated surgical procedure for pediatric AAS in DS. A 5-year-old male DS patient had neck pain and unsteady gait. Radiograms showed AAS with an atlantodental interval of 10 mm, and irreducible subluxation on extension. CT scan showed Os odontoideum and AAS. MRI demonstrated spinal cord compression between the C1 posterior arch and odontoid process. We performed a C-arm free O-arm navigated modified Goel procedure with postoperative halo-vest immobilization. At oneyear follow-up, good neurological recovery and solid bone fusion were observed. The patient had no complications such as epidural hematoma, infection, or nerve or vessel injury. This novel procedure is a useful and safe technique that protects surgeons and staff from radiation risk.


Subject(s)
Atlanto-Axial Joint/surgery , Down Syndrome/surgery , Joint Dislocations/surgery , Orthopedic Fixation Devices , Orthopedic Procedures/instrumentation , Cervical Vertebrae/surgery , Child, Preschool , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Pedicle Screws , Spinal Cord Compression/surgery , Spinal Fusion/methods , Surgery, Computer-Assisted , Tomography, X-Ray Computed
15.
Medicina (Kaunas) ; 58(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35334540

ABSTRACT

Background and Objectives: The thoracolumbar burst fracture is one of the most common spinal injuries. If the patient has severe symptoms, corpectomy is indicated. Currently, minimally invasive corpectomy with a navigated expandable vertebral cage is available thanks to spinal surgical technology. The aim of this study is to retrospectively compare clinical and radiographic outcomes of conventional and navigational minimally invasive corpectomy techniques. Materials and Methods: We retrospectively evaluated 21 patients who underwent thoracolumbar minimally invasive corpectomy between October 2016 and January 2021. Eleven patients had a navigated expandable cage (group N) and 10 patients had a conventional expandable cage (group C). Mean follow-up period was 31.9 months for group N and 34.7 months for group C, ranging from 12 to 42 months in both groups. Clinical and radiographic outcomes are assessed using values including visual analogue scale (VAS) for back pain and Oswestry disability index (ODI). This data was collected preoperatively and at 6, 12, and 24 months postoperatively. Results: Surgical time and intraoperative blood loss of both groups were not significantly different (234 min vs. 267 min, 656 mL vs. 786 mL). Changes in VAS and ODI were similar in both groups. However, lateral cage mal-position ratio in group N was lower than that of group C (relative risk 1.64, Odds ratio 4.5) and postoperative cage sinking was significantly lower in group N (p = 0.033). Conclusions: Clinical outcomes are not significantly different, but radiographic outcomes of lateral cage mal-position and postoperative cage sinking were significantly lower in the navigation group.


Subject(s)
Fractures, Compression , Thoracic Vertebrae , Humans , Lumbar Vertebrae/injuries , Lumbar Vertebrae/surgery , Lumbosacral Region , Retrospective Studies , Thoracic Vertebrae/injuries , Thoracic Vertebrae/surgery
16.
Asian Spine J ; 16(6): 874-881, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35184519

ABSTRACT

STUDY DESIGN: This is a virtual three-dimensional (3D) imaging study examining computed tomography (CT) data to investigate instrumentation placement. PURPOSE: In this study, we aim to clarify the ideal entry point and trajectory of the sacral alar iliac (SAI) screw in relationship to the dorsal foramen at S1 and the respective nerve root. OVERVIEW OF LITERATURE: To the best of our knowledge, there is yet no detailed 3D imaging study on the ideal entry point of the SAI screw. Despite the evidence suggesting that the dorsal foramen at S1 is a landmark on the sacrum, the S1 nerve root disruption is a general concern during the insertion of SAI screws. No other study has been published examining the nerve root location at the S1and SAI screw insertions. METHODS: Preoperative CT data from 26 patients pertaining to adult spinal deformities were investigated in this study. We applied a 3D image processing method for a detailed investigation. Virtual cylinders were used to mimic SAI screws. These were placed to penetrate the sacral iliac joint without violating the other cortex. We then assessed the trajectory of the longest SAI screw and the ideal entry point of SAI using a color mapping method on the surface of the sacrum. We measured the location of the nerve root at S1 in relation to the foramen at S1 and the sacral surface. RESULTS: As per the results of our color mapping, it was determined that areas that received high scores are located medially and caudally to the dorsal foramen of S1. The mean angle between a horizontal line and a line connecting the medial edge of the foramen and nerve root at S1 was 93.5°. The mean distances from the dorsal medial edge of the foramen and sacral surface to S1 nerve root were 21.8 mm and 13.9 mm, respectively. CONCLUSIONS: The ideal entry point of the SAI screw is located medially and caudally to the S1 dorsal foramen based on 3D digital mapping. It is also shown that this entry point spares the S1 nerve root from possible iatrogenic injuries.

17.
J Clin Med ; 10(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34768459

ABSTRACT

Minimally invasive posterior or transforaminal lumbar interbody fusion (MI-PLIF/TLIF) are widely accepted procedures for lumbar instability due to degenerative or traumatic diseases. Oblique lateral interbody fusion (OLIF) is currently receiving considerable attention because of the reductions in damage to the back muscles and neural tissue. The aim of this study was to compare clinical and radiographic outcomes of simultaneous single-position OLIF and percutaneous pedicle screw (PPS) fixation with MI-PLIF/TLIF. This retrospective comparative study included 98 patients, comprising 63 patients with single-position OLIF (Group SO) and 35 patients with MI-PLIF/TLIF (Group P/T). Cases with more than 1 year of follow-up were included in this study. Mean follow-up was 32.9 ± 7.0 months for Group SO and 33.7 ± 7.5 months for Group P/T. Clinical and radiological evaluations were performed. Comparing Group SO to Group P/T, surgical time and blood loss were 118 versus 172 min (p < 0.01) and 139 versus 374 mL (p < 0.01), respectively. Cage height, change in disk height, and postoperative foraminal height were significantly higher in Group SO than in Group P/T. The fusion rate was 96.8% in Group SO, similar to the 94.2% in Group P/T (p = 0.985). The complication rate was 6.3% in Group SO and 14.1% in Group P/T (p = 0.191). Simultaneous single position O-arm-navigated OLIF reduces the surgical time, blood loss, and time to ambulation after surgery. Good indirect decompression can be achieved with this method.

18.
Diagnostics (Basel) ; 11(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34679442

ABSTRACT

STUDY DESIGN: Prospective study. OBJECTIVE: Medical image fusion can provide information from multiple modalities in a single image. The present study aimed to determine whether three-dimensional (3D) lumbosacral vascular anatomy could be adequately portrayed using a non-enhanced CT-MRI medical image fusion technique. SUMMARY OF BACKGROUND DATA: Lateral lumbar interbody fusion has gained popularity for the surgical treatment of adult spinal deformity (ASD). Oblique lumbar interbody fusion at L5-S1 (OLIF51) is receiving considerable attention as a method of creating good L5-S1 lordosis. Access in OLIF51 requires evaluation of the vascular anatomy in the lumbosacral region. Conventional imaging modalities need a contrast medium to describe the vascular anatomy. METHODS: Participants comprised 15 patients with ASD or degenerative lumbar disease who underwent corrective surgery at our hospital between January 2020 and June 2021. A 3D vascular image with bony structures was obtained by fusing results from MRI and CT. We processed the merged image and measured the distance between left and right common iliac arteries and veins at two levels: the lower end of the L5 vertebral body (Window A) and the upper end of the S1 vertebral body (Window B). RESULTS: The mean sizes of Window A and Window B were 29.7 ± 10.7 mm and 36.9 ± 10.3 mm, respectively. The mean distance from the bifurcation to the lower end of the L5 vertebra was 23.7 ± 10.9 mm. Coronal deviation of the bifurcation was, from center to left, 12.6 ± 12.3 mm, and the distance from the center of the L5 vertebral body to the bifurcation was 0.79 ± 7.3 mm. Only one case showed a median sacral vein (6.7%). Clinically, we performed OLIF51 in 12 of the 15 cases (80%). CONCLUSION: Evaluating 3D lumbosacral vascular anatomy using a non-enhanced MRI and CT medical image fusion technique is very useful for OLIF51, particularly for patients in whom the use of contrast medium is contraindicated.

19.
Acta Med Okayama ; 75(5): 637-640, 2021.
Article in English | MEDLINE | ID: mdl-34703047

ABSTRACT

Among studies evaluating minimally invasive surgical (MIS) decompression of the L5 root, techniques involving transtubular endoscopic decompression under O-arm navigation are rare. We present the case of a 68-yearold woman with left leg pain, muscle weakness and gait disturbance of one month duration. The patient underwent transtubular endoscopic decompression under O-arm navigation. There is no radiation hazard to the operating room staff with this procedure. After surgery, the patient had significant pain relief and her left lower limb motor function had improved by follow-up at one year. C-arm-free endoscopic L5 root decompression is a safe and effective procedure.


Subject(s)
Decompression, Surgical/methods , Endoscopy/methods , Imaging, Three-Dimensional/methods , Spinal Nerve Roots/surgery , Surgery, Computer-Assisted/methods , Aged , Female , Humans , Lumbar Vertebrae/surgery , Minimally Invasive Surgical Procedures/methods
20.
Acta Med Okayama ; 75(5): 647-652, 2021.
Article in English | MEDLINE | ID: mdl-34703049

ABSTRACT

Sacral schwannoma is a rare tumor with relatively few symptoms; it thus tends to be large at diagnosis and is challenging to treat surgically. We present the case of a 12-year-old girl with a large sacral schwannoma that was successfully surgically resected using O-arm navigation in a two-stage operation. First, we performed tumor resection from the posterior aspect with assisted O-arm navigation. One week later, resection from the anterior aspect was conducted with posterior spinopelvic fixation and fibula graft. We performed partial resection of the tumor from the anterior and posterior aspects as much as possible. O-arm navigation contributed to precise and safe tumor resection and implant insertion.


Subject(s)
Neurilemmoma/surgery , Surgery, Computer-Assisted/methods , Child , Female , Humans , Imaging, Three-Dimensional , Sacrum/surgery
SELECTION OF CITATIONS
SEARCH DETAIL