Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37103467

ABSTRACT

Two Gram-stain-negative, terminal endospore-forming, rod-shaped and aerotolerant bacterial strains designated D1-1T and B3 were isolated from soil samples of an organic paddy in Japan. Strain D1-1T grew at 15-37 °C, pH 5.0-7.3, and with up to 0.5 % (w/v) NaCl. Phylogenetic analysis of the 16S rRNA gene revealed that strain D1-1T belonged to the genus Clostridium and was closely related to Clostridium zeae CSC2T (99.7 % sequence similarity), Clostridium fungisolvens TW1T (99.7 %) and Clostridium manihotivorum CT4T (99.3 %). Strains D1-1T and B3 were whole-genome sequenced and indistinguishable, with an average nucleotide identity value of 99.7 %. The average nucleotide identity (below 91.1 %) and digital DNA-DNA hybridization (below 43.6 %) values between the two novel isolates and their corresponding relatives showed that strains D1-1T and B3 could be readily distinguished from their closely related species. A novel Clostridium species, Clostridium folliculivorans sp. nov., with type strain D1-1T (=MAFF 212477T=DSM 113523T), is proposed based on genotypic and phenotypic data.


Subject(s)
Fatty Acids , Phospholipids , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Japan , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Clostridium/genetics , Nucleotides , Soil
2.
Can J Microbiol ; 59(6): 368-73, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23750950

ABSTRACT

Andosols comprise one of the most important soil groups for agricultural activities in Japan because they cover about 46.5% of arable upland fields. In this soil group, available phosphorus (P) is accumulated by application of excessive fertilizer, but little is known about the influence of increasing P availability on microbial community diversity at large scales. We collected soil samples from 9 agro-geographical sites with Andosol soils across an available P gradient (2048.1-59.1 mg P2O5·kg(-1)) to examine the influence of P availability on the fungal community diversity. We used polymerase chain reaction - denaturing gradient gel electrophoresis to analyze the fungal communities based on 18S rRNA genes. Statistical analyses revealed a high negative correlation between available P and fungal diversity (H'). Fungal diversity across all sites exhibited a significant hump-shaped relationship with available P (R(2) = 0.38, P < 0.001). In addition, the composition of the fungal community was strongly correlated with the available P gradient. The ribotype F6, which was positively correlated with available P, was closely related to Mortierella. The results show that both the diversity and the composition of the fungal community were influenced by available P concentrations in Andosols, at a large scale. This represents an important step toward understanding the processes responsible for the maintenance of fungal diversity in Andosolic soils.


Subject(s)
Biodiversity , Fungi/classification , Fungi/isolation & purification , Phosphorus/analysis , Soil Microbiology , Soil/chemistry , Crops, Agricultural , DNA, Fungal/analysis , Denaturing Gradient Gel Electrophoresis , Fertilizers , Fungi/genetics , Japan , Polymerase Chain Reaction , Ribotyping
3.
Microbes Environ ; 27(1): 72-9, 2012.
Article in English | MEDLINE | ID: mdl-22223474

ABSTRACT

We simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community. Additionally, two-way cluster analysis using the combined DGGE profile also indicated that all soil samples were classified into four clusters corresponding to the four sites, showing high site specificity of soil samples, and all DNA bands were classified into four clusters, showing the coexistence of specific DGGE bands of bacteria, fungi and nematodes in Andosol fields. The results of this study suggest that geography relative to soil properties has a simultaneous impact on soil microbial and nematode community compositions. This is the first combined profile analysis of bacteria, fungi and nematodes at different sites with agricultural Andosols.


Subject(s)
Bacteria/isolation & purification , Ecosystem , Fungi/isolation & purification , Nematoda/isolation & purification , Soil/parasitology , Agriculture , Animals , Bacteria/classification , Bacteria/genetics , Fungi/classification , Fungi/genetics , Japan , Molecular Sequence Data , Nematoda/classification , Nematoda/genetics , Phylogeny , Soil/analysis , Soil Microbiology
4.
Microbes Environ ; 27(1): 43-8, 2012.
Article in English | MEDLINE | ID: mdl-22200640

ABSTRACT

Growth inhibition due to continuous cropping of asparagus is a major problem; the yield of asparagus in replanted fields is low compared to that in new fields, and missing plants occur among young seedlings. Although soil-borne disease and allelochemicals are considered to be involved in this effect, this is still controversial. We aimed to develop a technique for the biological field diagnosis of growth inhibition due to continuous cropping. Therefore, in this study, fungal community structure and Fusarium community structure in continuously cropped fields of asparagus were analyzed by polymerase chain reaction/denaturing-gradient gel electrophoresis (PCR-DGGE). Soil samples were collected from the Aizu region of Fukushima Prefecture, Japan. Soil samples were taken from both continuously cropped fields of asparagus with growth inhibition and healthy neighboring fields of asparagus. The soil samples were collected from the fields of 5 sets in 2008 and 4 sets in 2009. We were able to distinguish between pathogenic and non-pathogenic Fusarium by using Alfie1 and Alfie2GC as the second PCR primers and PCR-DGGE. Fungal community structure was not greatly involved in the growth inhibition of asparagus due to continuous cropping. By contrast, the band ratios of Fusarium oxysporum f. sp. asparagi in growth-inhibited fields were higher than those in neighboring healthy fields. In addition, there was a positive correlation between the band ratios of Fusarium oxysporum f. sp. asparagi and the ratios of missing asparagus plants. We showed the potential of biological field diagnosis of growth inhibition due to continuous cropping of asparagus using PCR-DGGE.


Subject(s)
Asparagus Plant/microbiology , Denaturing Gradient Gel Electrophoresis/methods , Fusarium/growth & development , Fusarium/isolation & purification , Polymerase Chain Reaction/methods , Soil Microbiology , Agriculture , Fusarium/classification , Fusarium/genetics , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL