Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
J Environ Manage ; 310: 114747, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35196632

ABSTRACT

Peracetic acid (PAA) is considered as an effective and powerful oxidant for eliminating organic contaminants in wastewater treatment. The second-order rate constant (kapp) for the reaction of PAA with organic contaminants is practically important for evaluating their removal efficiency in wastewater treatment, but only limited numbers of kapp values are available. In this study, 70 organic compounds with various structures were selected, and the kapp of PAA with each organic compound was used to develop two quantitative structure-activity relationship (QSAR) models based on three kinds of descriptors including constitutional, quantum chemical, and the PaDEL descriptors. The genetic algorithm (GA) was applied to select the molecular descriptors, then the models developed by multiple linear regression (MLR). The most important descriptors that explain the reactivity of organic compounds with PAA are the EHOMO for the model with the constitutional and quantum chemical descriptors. The maxHdsCH and minHdCH2 are two most important descriptors for the model with only PaDEL descriptors. The developed models can be used to predict kapp for a wide range of organic contaminants. The accuracy of the developed models was proved by the internal, external validation and the Y-scrambling technique. The developed QSAR models using the GA-MLR method can be used as a screening tool for predicting the elimination of organic contaminants by PAA and increasing the understanding of chemical pollutant fate.


Subject(s)
Peracetic Acid , Quantitative Structure-Activity Relationship , Algorithms , Linear Models , Organic Chemicals/chemistry
2.
Chemosphere ; 291(Pt 1): 133037, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34838834

ABSTRACT

Iron minerals, such as iron oxides and iron oxyhydroxides, are the main influential soil components in catalyzed hydrogen peroxide propagation (CHP). Due to their dual effects on H2O2 activation to produce reactive oxygen species (ROS) and invalid consumption to produce oxygen, the intrinsic reactivity of iron minerals toward H2O2 decomposition requires comprehensive investigations. Herein, six iron minerals (hematite, magnetite, maghemite, goethite, feroxyhyte, and ferrihydrite) for H2O2 decomposition were investigated by a combination of normalized kinetic rate constants of H2O2 decomposition (NkH2O2), O2 production (NkO2), benzoic acid degradation (NkBA), and hexachloroethane degradation (NkHCA) over the surface area of each mineral. The results indicate H2O2 decomposition over iron minerals is a surface-related heterogeneous process. Hematite and goethite are the most promising minerals for environmental cleanup in terms of ROS production, because their H2O2 utilization efficiency for benzoic acid (BA) degradation (0.138 and 0.024 mol BA/mol H2O2 for hematite and goethite, respectively) are highest among the six iron minerals. Magnetite and maghemite are highly active for both H2O2 decomposition and O2 production at neutral and basic pHs. The presence of organic compounds suppresses O2 production by more than 60%, which favors H2O2 utilization. Ferrihydrite and feroxyhyte are considered as the problematic mineral for CHP due to that the two minerals acquire a high O2 production and negligible ROS generation at all pHs. The results of this study provide new insights to increase the understandings of H2O2-iron mineral systems and guide the application of iron minerals in chemical oxidation technologies.


Subject(s)
Hydrogen Peroxide , Iron Compounds , Catalysis , Ferric Compounds , Iron , Minerals , Oxidation-Reduction , Oxides , Oxygen
3.
Water Res ; 145: 731-740, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30216867

ABSTRACT

One challenge in H2O2 based Fenton-like reaction is to break through the limitation of slow reduction of ferric species (FeIII). Present work describes a dramatic acceleration of Fenton-like reaction at neutral pH by using calcium peroxide (CaO2) as a source of hydrogen peroxide (H2O2) and EDTA as a chelating agent of ferric ions. In an optimized condition, phenol degradation in the H2O2 system displayed an initial latent time of 60 min, while phenol can be degraded immediately and removed completely in 30 min in the CaO2 system. Visual MINTEQ analyses indicated Fe-EDTA- was the active species in the reaction. The contribution of 1O2 in CaO2 system was excluded by the poor selectivity in phenol conversion and the comparable 1O2-TEMP EPR signals in both CaO2 and H2O2 systems. Kinetic analyses using chloroform as the probe of O2·- suggested the high production rate of O2·-, which is four orders of magnitude higher than that in H2O2 system. The mechanism of the accelerated CaO2 based Fenton-like reactions was featured by that two electrons coming from CaO2 can be utilized to promote reduction of FeIII: an inner sphere electron transfer takes place to reduce FeIII-EDTA and produce O2·-, and subsequently O2·- provides an electron to reduce another FeIII-EDTA. The revealed intrinsic reducibility in CaO2 based Fenton-like reaction represents a new strategy to break through the well-known rate limiting step of FeIII reduction in Fenton-like reaction and facilitate the removal of organic pollutants at neutral pHs, and also indicates a promising source of O2·- for diverse applications.


Subject(s)
Hydrogen Peroxide , Superoxides , Ferric Compounds , Iron , Oxidation-Reduction
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 198: 168-176, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29533855

ABSTRACT

The integrated system of pyrene and cetyltrimethyl ammonium bromide (CTAB) capped silver nanoparticles (AgNPs) with a distance (r) of 2.78nm has been developed for the detection of Hg (II) and pyrene dimer. The interaction between pyrene and AgNPs results in the fluorescence quenching of pyrene due to the energy transfer, whose mechanism can be attributed to the Forster Resonance Energy Transfer (FRET) supported by experimental observation and theoretical calculations. The developed probe shows a highly selective and sensitive response towards Hg (II) probably due to the amalgam formation, which results in the fluorescence recovery (90%) of pyrene and color change of solution from yellowish brown to colorless. The addition of Hg (II) may increase the distance between pyrene and AgNPs undergoes the 'FRET OFF' process. This system gives a selective response towards Hg (II) over other competing metal ions. Under the optimal condition, the system offers good linearity between 0.1 and 0.6µgmL-1 with a detection limit of 62ngmL-1. In addition, the system also provides an effective platform for detection of pyrene in its dimer form even at very low concentrations (10ngmL-1) on the surface of AgNPs. Therefore, it could be used as effective alternatives for the detection of Hg (II) as well as pyrene simultaneously.

5.
Water Sci Technol ; 74(10): 2305-2313, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27858787

ABSTRACT

Over the past few years, heavy metals have been proved to be one of the most important contaminants in industrial wastewater. Chromium is one of these heavy metals, which is being utilized in several industries such as textile, finishing and leather industries. Since hexavalent chromium is highly toxic to human health, removal of it from the wastewater is essential for human safety. One of the techniques for removing chromium (VI) is the use of different adsorbents such as polyaniline. In this study, composites of polyaniline (PANi) were synthesized with various amounts of polyvinyl alcohol (PVA). The results showed that PANi/PVA removed around 76% of chromium at a pH of 6.5; the PVA has altered the morphology of the composites and increased the removal efficiency. Additionally, synthesis of 20 mg/L of PVA by PANi composite showed the best removal efficiency, and the optimal stirring time was calculated as 30 minutes. Moreover, the chromium removal efficiency was increased by decreasing the pH, initial chromium concentration and increasing stirring time.


Subject(s)
Aniline Compounds/chemistry , Chromium/chemistry , Polyvinyl Alcohol/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Waste Disposal, Fluid/methods , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL