Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Genet Med ; 26(11): 101211, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39011766

ABSTRACT

PURPOSE: An early genetic diagnosis can guide the time-sensitive treatment of individuals with genetic epilepsies. However, most genetic diagnoses occur long after disease onset. We aimed to identify early clinical features suggestive of genetic diagnoses in individuals with epilepsy through large-scale analysis of full-text electronic medical records. METHODS: We extracted 89 million time-stamped standardized clinical annotations using Natural Language Processing from 4,572,783 clinical notes from 32,112 individuals with childhood epilepsy, including 1925 individuals with known or presumed genetic epilepsies. We applied these features to train random forest models to predict SCN1A-related disorders and any genetic diagnosis. RESULTS: We identified 47,774 age-dependent associations of clinical features with genetic etiologies a median of 3.6 years before molecular diagnosis. Across all 710 genetic etiologies identified in our cohort, neurodevelopmental differences between 6 to 9 months increased the likelihood of a later molecular diagnosis 5-fold (P < .0001, 95% CI = 3.55-7.42). A later diagnosis of SCN1A-related disorders (area under the curve [AUC] = 0.91) or an overall positive genetic diagnosis (AUC = 0.82) could be reliably predicted using random forest models. CONCLUSION: Clinical features predictive of genetic epilepsies precede molecular diagnoses by up to several years in conditions with known precision treatments. An earlier diagnosis facilitated by automated electronic medical records analysis has the potential for earlier targeted therapeutic strategies in the genetic epilepsies.

2.
Epilepsia ; 62(6): 1293-1305, 2021 06.
Article in English | MEDLINE | ID: mdl-33949685

ABSTRACT

OBJECTIVE: The clinical features of epilepsy determine how it is defined, which in turn guides management. Therefore, consideration of the fundamental clinical entities that comprise an epilepsy is essential in the study of causes, trajectories, and treatment responses. The Human Phenotype Ontology (HPO) is used widely in clinical and research genetics for concise communication and modeling of clinical features, allowing extracted data to be harmonized using logical inference. We sought to redesign the HPO seizure subontology to improve its consistency with current epileptological concepts, supporting the use of large clinical data sets in high-throughput clinical and research genomics. METHODS: We created a new HPO seizure subontology based on the 2017 International League Against Epilepsy (ILAE) Operational Classification of Seizure Types, and integrated concepts of status epilepticus, febrile, reflex, and neonatal seizures at different levels of detail. We compared the HPO seizure subontology prior to, and following, our revision, according to the information that could be inferred about the seizures of 791 individuals from three independent cohorts: 2 previously published and 150 newly recruited individuals. Each cohort's data were provided in a different format and harmonized using the two versions of the HPO. RESULTS: The new seizure subontology increased the number of descriptive concepts for seizures 5-fold. The number of seizure descriptors that could be annotated to the cohort increased by 40% and the total amount of information about individuals' seizures increased by 38%. The most important qualitative difference was the relationship of focal to bilateral tonic-clonic seizure to generalized-onset and focal-onset seizures. SIGNIFICANCE: We have generated a detailed contemporary conceptual map for harmonization of clinical seizure data, implemented in the official 2020-12-07 HPO release and freely available at hpo.jax.org. This will help to overcome the phenotypic bottleneck in genomics, facilitate reuse of valuable data, and ultimately improve diagnostics and precision treatment of the epilepsies.


Subject(s)
Models, Neurological , Seizures/physiopathology , Big Data , Cohort Studies , Data Interpretation, Statistical , Epilepsies, Partial/classification , Epilepsies, Partial/physiopathology , Epilepsy , Epilepsy, Generalized/classification , Epilepsy, Generalized/physiopathology , Epilepsy, Tonic-Clonic/classification , Epilepsy, Tonic-Clonic/physiopathology , Genomics , High-Throughput Nucleotide Sequencing , Humans , Phenotype , Seizures/classification , Seizures/genetics
3.
Ann Clin Transl Neurol ; 7(8): 1429-1435, 2020 08.
Article in English | MEDLINE | ID: mdl-32666661

ABSTRACT

Febrile infection-related epilepsy syndrome (FIRES) is a devastating epilepsy characterized by new-onset refractory status epilepticus with a prior febrile infection. We performed exome sequencing in 50 individuals with FIRES, including 27 patient-parent trios and 23 single probands, none of whom had pathogenic variants in established genes for epilepsies or neurodevelopmental disorders. We also performed HLA sequencing in 29 individuals with FIRES and 529 controls, which failed to identify prominent HLA alleles. The genetic architecture of FIRES is substantially different from other developmental and epileptic encephalopathies, and the underlying etiology remains elusive, requiring novel approaches to identify the underlying causative factors.


Subject(s)
Communicable Diseases/complications , Epileptic Syndromes/etiology , Epileptic Syndromes/genetics , Fever/complications , HLA Antigens/genetics , Sequence Analysis, DNA , Adolescent , Child , Child, Preschool , Drug Resistant Epilepsy/etiology , Drug Resistant Epilepsy/genetics , Female , Humans , Male , Status Epilepticus/etiology , Status Epilepticus/genetics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL