Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
Cancer Discov ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975874

ABSTRACT

KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+;Trp53LSL-R172H/+;p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, and Cdk6/Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies.

2.
Cell Rep ; 43(6): 114350, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870013

ABSTRACT

Renal cell carcinoma with sarcomatoid differentiation (sRCC) is associated with poor survival and a heightened response to immune checkpoint inhibitors (ICIs). Two major barriers to improving outcomes for sRCC are the limited understanding of its gene regulatory programs and the low diagnostic yield of tumor biopsies due to spatial heterogeneity. Herein, we characterized the epigenomic landscape of sRCC by profiling 107 epigenomic libraries from tissue and plasma samples from 50 patients with RCC and healthy volunteers. By profiling histone modifications and DNA methylation, we identified highly recurrent epigenomic reprogramming enriched in sRCC. Furthermore, CRISPRa experiments implicated the transcription factor FOSL1 in activating sRCC-associated gene regulatory programs, and FOSL1 expression was associated with the response to ICIs in RCC in two randomized clinical trials. Finally, we established a blood-based diagnostic approach using detectable sRCC epigenomic signatures in patient plasma, providing a framework for discovering epigenomic correlates of tumor histology via liquid biopsy.


Subject(s)
Carcinoma, Renal Cell , Epigenomics , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Epigenomics/methods , DNA Methylation/genetics , Cell Differentiation , Gene Expression Regulation, Neoplastic , Male , Female , Epigenesis, Genetic , Middle Aged , Proto-Oncogene Proteins c-fos
3.
Immunity ; 57(6): 1177-1181, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38865960

ABSTRACT

AI is rapidly becoming part of many aspects of daily life, with an impact that reaches all fields of research. We asked investigators to share their thoughts on how AI is changing immunology research, what is necessary to move forward, the potential and the pitfalls, and what will remain unchanged as the field journeys into a new era.


Subject(s)
Allergy and Immunology , Artificial Intelligence , Humans , Animals
4.
JCO Precis Oncol ; 8: e2300362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865671

ABSTRACT

PURPOSE: There is significant interest in identifying complete responders to neoadjuvant chemotherapy (NAC) before radical cystectomy (RC) to potentially avoid removal of a pathologically benign bladder. However, clinical restaging after NAC is highly inaccurate. The objective of this study was to develop a next-generation sequencing-based molecular assay using urine to enhance clinical staging of patients with bladder cancer. METHODS: Urine samples from 20 and 44 patients with bladder cancer undergoing RC were prospectively collected for retrospective analysis for molecular correlate analysis from two clinical trials, respectively. The first cohort was used to benchmark the assay, and the second was used to determine the performance characteristics of the test as it correlates to responder status as measured by pathologic examination. RESULTS: First, to benchmark the assay, known mutations identified in the tissue (MT) of patients from the Accelerated Methotrexate, Vinblastine, Doxorubicin, Cisplatin trial (ClinicalTrials.gov identifier: NCT01611662, n = 16) and a cohort from University of California-San Francisco (n = 4) were cross referenced against mutation profiles from urine (MU). We then determined the correlation between MU persistence and residual disease in pre-RC urine samples from a second prospective clinical trial (The pT0 trial; ClinicalTrials.gov identifier: NCT02968732). Residual MU status correlated strongly with residual disease status (pT0 trial; n = 44; P = .0092) when MU from urine supernatant and urine pellet were assessed separately and analyzed in tandem. The sensitivity, specificity, PPV, and NPV were 91%, 50%, 86%, and 63% respectively, with an overall accuracy of 82% for this second cohort. CONCLUSION: MU are representative of MT and thus can be used to enhance clinical staging of urothelial carcinoma. Urine biopsy may be used as a reliable tool that can be further developed to identify complete response to NAC in anticipation of safe RC avoidance.


Subject(s)
Biomarkers, Tumor , Cystectomy , Neoplasm Staging , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/urine , Urinary Bladder Neoplasms/surgery , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Female , Male , Middle Aged , Aged , Biomarkers, Tumor/urine , Biopsy , Retrospective Studies , Neoadjuvant Therapy
5.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746320

ABSTRACT

Pediatric solid tumors are rare malignancies that represent a leading cause of death by disease among children in developed countries. The early age-of-onset of these tumors suggests that germline genetic factors are involved, yet conventional germline testing for short coding variants in established predisposition genes only identifies pathogenic events in 10-15% of patients. Here, we examined the role of germline structural variants (SVs)-an underexplored form of germline variation-in pediatric extracranial solid tumors using germline genome sequencing of 1,766 affected children, their 943 unaffected relatives, and 6,665 adult controls. We discovered a sex-biased association between very large (>1 megabase) germline chromosomal abnormalities and a four-fold increased risk of solid tumors in male children. The overall impact of germline SVs was greatest in neuroblastoma, where we revealed burdens of ultra-rare SVs that cause loss-of-function of highly expressed, mutationally intolerant, neurodevelopmental genes, as well as noncoding SVs predicted to disrupt three-dimensional chromatin domains in neural crest-derived tissues. Collectively, our results implicate rare germline SVs as a predisposing factor to pediatric solid tumors that may guide future studies and clinical practice.

6.
J Clin Invest ; 134(13)2024 May 14.
Article in English | MEDLINE | ID: mdl-38758740

ABSTRACT

The diversity of structural variants (SVs) in melanoma and how they impact oncogenesis are incompletely known. We performed harmonized analysis of SVs across melanoma histologic and genomic subtypes, and we identified distinct global properties between subtypes. These included the frequency and size of SVs and SV classes, their relation to chromothripsis events, and the impact on cancer-related genes of SVs that alter topologically associated domain (TAD) boundaries. Following our prior identification of double-stranded break repair deficiency in a subset of triple-wild-type cutaneous melanoma, we identified MRE11 and NBN loss-of-function SVs in melanomas with this mutational signature. Experimental knockouts of MRE11 and NBN, followed by olaparib cell viability assays in melanoma cells, indicated that dysregulation of each of these genes may cause sensitivity to PARP inhibitors in cutaneous melanomas. Broadly, harmonized analysis of melanoma SVs revealed distinct global genomic properties and molecular drivers, which may have biological and therapeutic impact.


Subject(s)
Melanoma , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Humans , Cell Line, Tumor , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Carcinogenesis/genetics , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phthalazines/pharmacology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Genomic Structural Variation/genetics , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
7.
Cancer Cell ; 42(5): 732-735, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38579722

ABSTRACT

Saliby et al. show that a machine learning approach can accurately classify clear cell renal cell carcinoma (RCC) into distinct molecular subtypes using transcriptomic data. When applied to tumors biospecimens from the JAVELIN Renal 101 (JR101) trial, a benefit is observed with immune checkpoint inhibitor (ICI)-based therapy across all molecular subtypes.


Subject(s)
Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Immunotherapy , Kidney Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/therapy , Carcinoma, Renal Cell/drug therapy , Humans , Kidney Neoplasms/immunology , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Kidney Neoplasms/drug therapy , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Molecular Targeted Therapy/methods , Treatment Outcome , Machine Learning
8.
Cancer Discov ; 14(5): 711-726, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38597966

ABSTRACT

Artificial intelligence (AI) in oncology is advancing beyond algorithm development to integration into clinical practice. This review describes the current state of the field, with a specific focus on clinical integration. AI applications are structured according to cancer type and clinical domain, focusing on the four most common cancers and tasks of detection, diagnosis, and treatment. These applications encompass various data modalities, including imaging, genomics, and medical records. We conclude with a summary of existing challenges, evolving solutions, and potential future directions for the field. SIGNIFICANCE: AI is increasingly being applied to all aspects of oncology, where several applications are maturing beyond research and development to direct clinical integration. This review summarizes the current state of the field through the lens of clinical translation along the clinical care continuum. Emerging areas are also highlighted, along with common challenges, evolving solutions, and potential future directions for the field.


Subject(s)
Artificial Intelligence , Medical Oncology , Neoplasms , Humans , Medical Oncology/methods , Medical Oncology/trends , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/diagnosis
9.
JAMA Netw Open ; 7(3): e244077, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38546644

ABSTRACT

Importance: Artificial intelligence (AI) tools are rapidly integrating into cancer care. Understanding stakeholder views on ethical issues associated with the implementation of AI in oncology is critical to optimal deployment. Objective: To evaluate oncologists' views on the ethical domains of the use of AI in clinical care, including familiarity, predictions, explainability (the ability to explain how a result was determined), bias, deference, and responsibilities. Design, Setting, and Participants: This cross-sectional, population-based survey study was conducted from November 15, 2022, to July 31, 2023, among 204 US-based oncologists identified using the National Plan & Provider Enumeration System. Main Outcomes and Measures: The primary outcome was response to a question asking whether participants agreed or disagreed that patients need to provide informed consent for AI model use during cancer treatment decisions. Results: Of 387 surveys, 204 were completed (response rate, 52.7%). Participants represented 37 states, 120 (63.7%) identified as male, 128 (62.7%) as non-Hispanic White, and 60 (29.4%) were from academic practices; 95 (46.6%) had received some education on AI use in health care, and 45.3% (92 of 203) reported familiarity with clinical decision models. Most participants (84.8% [173 of 204]) reported that AI-based clinical decision models needed to be explainable by oncologists to be used in the clinic; 23.0% (47 of 204) stated they also needed to be explainable by patients. Patient consent for AI model use during treatment decisions was supported by 81.4% of participants (166 of 204). When presented with a scenario in which an AI decision model selected a different treatment regimen than the oncologist planned to recommend, the most common response was to present both options and let the patient decide (36.8% [75 of 204]); respondents from academic settings were more likely than those from other settings to let the patient decide (OR, 2.56; 95% CI, 1.19-5.51). Most respondents (90.7% [185 of 204]) reported that AI developers were responsible for the medico-legal problems associated with AI use. Some agreed that this responsibility was shared by physicians (47.1% [96 of 204]) or hospitals (43.1% [88 of 204]). Finally, most respondents (76.5% [156 of 204]) agreed that oncologists should protect patients from biased AI tools, but only 27.9% (57 of 204) were confident in their ability to identify poorly representative AI models. Conclusions and Relevance: In this cross-sectional survey study, few oncologists reported that patients needed to understand AI models, but most agreed that patients should consent to their use, and many tasked patients with choosing between physician- and AI-recommended treatment regimens. These findings suggest that the implementation of AI in oncology must include rigorous assessments of its effect on care decisions as well as decisional responsibility when problems related to AI use arise.


Subject(s)
Neoplasms , Oncologists , Humans , Male , Artificial Intelligence , Cross-Sectional Studies , Neoplasms/therapy , Ambulatory Care Facilities
10.
Cancer Immunol Res ; 12(6): 704-718, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38552171

ABSTRACT

The checkpoint immunotherapeutic pembrolizumab induces responses in a small minority of patients with metastatic castration-resistant prostate cancer (mCRPC). Radium-223 (R223) may increase immunogenicity of bone metastases and increase pembrolizumab (P) activity. In a randomized phase II study, we assessed the effect of R223+P compared with R223 on tumor immune infiltration, safety, and clinical outcomes in patients with mCRPC. The primary endpoint was differences in CD4+ and CD8+ T-cell infiltrate in 8-week versus baseline bone metastasis biopsies; secondary endpoints were safety, radiographic progression-free survival (rPFS), and overall survival (OS). Of the 42 treated patients (29 R223+P, 13 R223), 18 R223+P and 8 R223 patients had evaluable paired tumor biopsies. Median fold-change of CD4+ T cells was -0.7 (range: -9.3 to 4.7) with R223+P and 0.1 (-11.1 to 3.7) with R223 (P = 0.66); for CD8+ T cells, median fold-change was -0.6 (-7.4 to 5.3) with R223+P and -1.3 (-3.1 to 4.8) with R223 (P = 0.66). Median rPFS and OS was 6.1 (95% confidence interval: 2.7-11.0) and 16.9 months [12.7-not reached (NR)], respectively, with R223+P and 5.7 (2.6-NR) and 16.0 (9.0-NR), respectively, with R223. Although R223+P was well tolerated with no unexpected toxicity, the combination did not improve efficacy. High-dimensional flow cytometry demonstrated minimal immune modulation with R223, whereas R223+P induced CTLA-4 expression on circulating CD4+ T cells. Clinical responders possessed lower circulating frequencies of Ki67+ T and myeloid cells at baseline and higher circulating frequencies of TIM-3+ T and myeloid cells by week 9. Although R223+P did not induce T-cell infiltration into the tumor microenvironment, exhaustion of induced peripheral T-cell immune responses may dampen the combination's clinical activity.


Subject(s)
Antibodies, Monoclonal, Humanized , Prostatic Neoplasms, Castration-Resistant , Radium , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Aged , Radium/therapeutic use , Middle Aged , Aged, 80 and over , Bone Neoplasms/secondary , Bone Neoplasms/drug therapy , CD8-Positive T-Lymphocytes/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects
11.
Eur Urol Open Sci ; 62: 107-122, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38496821

ABSTRACT

Background and objective: Previous germline studies on renal cell carcinoma (RCC) have usually pooled clear and non-clear cell RCCs and have not adequately accounted for population stratification, which might have led to an inaccurate estimation of genetic risk. Here, we aim to analyze the major germline drivers of RCC risk and clinically relevant but underexplored germline variant types. Methods: We first characterized germline pathogenic variants (PVs), cryptic splice variants, and copy number variants (CNVs) in 1436 unselected RCC patients. To evaluate the enrichment of PVs in RCC, we conducted a case-control study of 1356 RCC patients ancestry matched with 16 512 cancer-free controls using approaches accounting for population stratification and histological subtypes, followed by characterization of secondary somatic events. Key findings and limitations: Clear cell RCC patients (n = 976) exhibited a significant burden of PVs in VHL compared with controls (odds ratio [OR]: 39.1, p = 4.95e-05). Non-clear cell RCC patients (n = 380) carried enrichment of PVs in FH (OR: 77.9, p = 1.55e-08) and MET (OR: 1.98e11, p = 2.07e-05). In a CHEK2-focused analysis with European participants, clear cell RCC (n = 906) harbored nominal enrichment of low-penetrance CHEK2 variants-p.Ile157Thr (OR: 1.84, p = 0.049) and p.Ser428Phe (OR: 5.20, p = 0.045), while non-clear cell RCC (n = 295) exhibited nominal enrichment of CHEK2 loss of function PVs (OR: 3.51, p = 0.033). Patients with germline PVs in FH, MET, and VHL exhibited significantly earlier age of cancer onset than patients without germline PVs (mean: 46.0 vs 60.2 yr, p < 0.0001), and more than half had secondary somatic events affecting the same gene (n = 10/15, 66.7%). Conversely, CHEK2 PV carriers exhibited a similar age of onset to patients without germline PVs (mean: 60.1 vs 60.2 yr, p = 0.99), and only 30.4% carried somatic events in CHEK2 (n = 7/23). Finally, pathogenic germline cryptic splice variants were identified in SDHA and TSC1, and pathogenic germline CNVs were found in 18 patients, including CNVs in FH, SDHA, and VHL. Conclusions and clinical implications: This analysis supports the existing link between several RCC risk genes and RCC risk manifesting in earlier age of onset. It calls for caution when assessing the role of CHEK2 due to the burden of founder variants with varying population frequency. It also broadens the definition of the RCC germline landscape of pathogenicity to incorporate previously understudied types of germline variants. Patient summary: In this study, we carefully compared the frequency of rare inherited mutations with a focus on patients' genetic ancestry. We discovered that subtle variations in genetic background may confound a case-control analysis, especially in evaluating the cancer risk associated with specific genes, such as CHEK2. We also identified previously less explored forms of rare inherited mutations, which could potentially increase the risk of kidney cancer.

12.
J Immunother Cancer ; 12(1)2024 01 08.
Article in English | MEDLINE | ID: mdl-38191244

ABSTRACT

Immuno-oncology holds promise for transforming patient care having achieved durable clinical response rates across a variety of advanced and metastatic cancers. Despite these achievements, only a minority of patients respond to immunotherapy, underscoring the importance of elucidating molecular mechanisms responsible for response and resistance to inform the development and selection of treatments. Breakthroughs in molecular sequencing technologies have led to the generation of an immense amount of genomic and transcriptomic sequencing data that can be mined to uncover complex tumor-immune interactions using computational tools. In this review, we discuss existing and emerging computational methods that contextualize the composition and functional state of the tumor microenvironment, infer the reactivity and clonal dynamics from reconstructed immune cell receptor repertoires, and predict the antigenic landscape for immune cell recognition. We further describe the advantage of multi-omics analyses for capturing multidimensional relationships and artificial intelligence techniques for integrating omics data with histopathological and radiological images to encapsulate patterns of treatment response and tumor-immune biology. Finally, we discuss key challenges impeding their widespread use and clinical application and conclude with future perspectives. We are hopeful that this review will both serve as a guide for prospective researchers seeking to use existing tools for scientific discoveries and inspire the optimization or development of novel tools to enhance precision, ultimately expediting advancements in immunotherapy that improve patient survival and quality of life.


Subject(s)
Artificial Intelligence , Neoplasms , Humans , Prospective Studies , Quality of Life , Neoplasms/therapy , Medical Oncology , Antigen-Antibody Complex , Tumor Microenvironment
13.
J Immunother Cancer ; 12(1)2024 01 25.
Article in English | MEDLINE | ID: mdl-38272561

ABSTRACT

BACKGROUND: Recent trials suggest that programmed cell death 1 (PD-1)-directed immunotherapy may be beneficial for some patients with anal squamous cell carcinoma and biomarkers predictive of response are greatly needed. METHODS: This multicenter phase II clinical trial (NCT02919969) enrolled patients with metastatic or locally advanced incurable anal squamous cell carcinoma (n=32). Patients received pembrolizumab 200 mg every 3 weeks. The primary endpoint of the trial was objective response rate (ORR). Exploratory objectives included analysis of potential predictive biomarkers including assessment of tumor-associated immune cell populations with multichannel immunofluorescence and analysis of circulating tumor tissue modified viral-human papillomavirus DNA (TTMV-HPV DNA) using serially collected blood samples. To characterize the clinical features of long-term responders, we combined data from our prospective trial with a retrospective cohort of patients with anal cancer treated with anti-PD-1 immunotherapy (n=18). RESULTS: In the phase II study, the ORR to pembrolizumab monotherapy was 9.4% and the median progression-free survival was 2.2 months. Despite the high level of HPV positivity observed with circulating TTMV-HPV DNA testing, the majority of patients had low levels of tumor-associated CD8+PD-1+ T cells on pretreatment biopsy. Patients who benefited from pembrolizumab had decreasing TTMV-HPV DNA scores and a complete responder's TTMV-HPV DNA became undetectable. Long-term pembrolizumab responses were observed in one patient from the trial (5.3 years) and three patients (2.5, 6, and 8 years) from the retrospective cohort. Long-term responders had HPV-positive tumors, lacked liver metastases, and achieved a radiological complete response. CONCLUSIONS: Pembrolizumab has durable efficacy in a rare subset of anal cancers. However, despite persistence of HPV infection, indicated by circulating HPV DNA, most advanced anal cancers have low numbers of tumor-associated CD8+PD-1+ T cells and are resistant to pembrolizumab.


Subject(s)
Antibodies, Monoclonal, Humanized , Anus Neoplasms , Carcinoma, Squamous Cell , Papillomavirus Infections , Humans , Retrospective Studies , Prospective Studies , Programmed Cell Death 1 Receptor , Carcinoma, Squamous Cell/drug therapy , Anus Neoplasms/drug therapy , DNA
14.
Clin Cancer Res ; 29(24): 5116-5127, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37870965

ABSTRACT

PURPOSE: There is an urgent need for biomarkers of radiation response in organ-sparing therapies. Bladder preservation with trimodality therapy (TMT), consisting of transurethral tumor resection followed by chemoradiation, is an alternative to radical cystectomy for muscle-invasive bladder cancer (MIBC), but molecular determinants of response are poorly understood. EXPERIMENTAL DESIGN: We characterized genomic and transcriptomic features correlated with long-term response in a single institution cohort of patients with MIBC homogeneously treated with TMT. Pretreatment tumors from 76 patients with MIBC underwent whole-exome sequencing; 67 underwent matched transcriptomic profiling. Molecular features were correlated with clinical outcomes including modified bladder-intact event-free survival (mBI-EFS), a composite endpoint that reflects long-term cancer control with bladder preservation. RESULTS: With a median follow-up of 74.6 months in alive patients, 37 patients had favorable long-term response to TMT while 39 had unfavorable long-term response. Tumor mutational burden was not associated with outcomes after TMT. DNA damage response gene alterations were associated with improved locoregional control and mBI-EFS. Of these alterations, somatic ERCC2 mutations stood out as significantly associated with favorable long-term outcomes; patients with ERCC2 mutations had significantly improved mBI-EFS [HR, 0.15; 95% confidence interval (CI), 0.06-0.37; P = 0.030] and improved BI-EFS, an endpoint that includes all-cause mortality (HR, 0.33; 95% CI, 0.15-0.68; P = 0.044). ERCC2 mutant bladder cancer cell lines were significantly more sensitive to concurrent cisplatin and radiation treatment in vitro than isogenic ERCC2 wild-type cells. CONCLUSIONS: Our data identify ERCC2 mutation as a candidate biomarker associated with sensitivity and long-term response to chemoradiation in MIBC. These findings warrant validation in independent cohorts.


Subject(s)
Urinary Bladder Neoplasms , Humans , Neoplasm Invasiveness , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/pathology , Cisplatin/therapeutic use , Cystectomy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/therapeutic use , Genomics , Treatment Outcome , Xeroderma Pigmentosum Group D Protein/genetics
15.
BMC Bioinformatics ; 24(1): 328, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37658330

ABSTRACT

BACKGROUND: Longitudinal data on key cancer outcomes for clinical research, such as response to treatment and disease progression, are not captured in standard cancer registry reporting. Manual extraction of such outcomes from unstructured electronic health records is a slow, resource-intensive process. Natural language processing (NLP) methods can accelerate outcome annotation, but they require substantial labeled data. Transfer learning based on language modeling, particularly using the Transformer architecture, has achieved improvements in NLP performance. However, there has been no systematic evaluation of NLP model training strategies on the extraction of cancer outcomes from unstructured text. RESULTS: We evaluated the performance of nine NLP models at the two tasks of identifying cancer response and cancer progression within imaging reports at a single academic center among patients with non-small cell lung cancer. We trained the classification models under different conditions, including training sample size, classification architecture, and language model pre-training. The training involved a labeled dataset of 14,218 imaging reports for 1112 patients with lung cancer. A subset of models was based on a pre-trained language model, DFCI-ImagingBERT, created by further pre-training a BERT-based model using an unlabeled dataset of 662,579 reports from 27,483 patients with cancer from our center. A classifier based on our DFCI-ImagingBERT, trained on more than 200 patients, achieved the best results in most experiments; however, these results were marginally better than simpler "bag of words" or convolutional neural network models. CONCLUSION: When developing AI models to extract outcomes from imaging reports for clinical cancer research, if computational resources are plentiful but labeled training data are limited, large language models can be used for zero- or few-shot learning to achieve reasonable performance. When computational resources are more limited but labeled training data are readily available, even simple machine learning architectures can achieve good performance for such tasks.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Disease Progression , Electric Power Supplies , Electronic Health Records
16.
Genome Med ; 15(1): 65, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658461

ABSTRACT

BACKGROUND: Breast cancer patients from the indigenous Arab population present much earlier than patients from Western countries and have traditionally been underrepresented in cancer genomics studies. The contribution of polygenic and Mendelian risk toward the earlier onset of breast cancer in the population remains elusive. METHODS: We performed low-pass whole genome sequencing (lpWGS) and whole-exome sequencing (WES) from 220 female breast cancer patients unselected for positive family history from the indigenous Arab population. Using publicly available resources, we imputed population-specific variants and calculated breast cancer burden-sensitive polygenic risk scores (PRS). Variant pathogenicity was also evaluated on exome variants with high coverage. RESULTS: Variants imputed from lpWGS showed high concordance with paired exome (median dosage correlation: 0.9459, Interquartile range: 0.9410-0.9490). After adjusting the PRS to the Arab population, we found significant associations between PRS performance in risk prediction and first-degree relative breast cancer history prediction (Spearman rho=0.43, p = 0.03), where breast cancer patients in the top PRS decile are 5.53 (95% CI 1.76-17.97, p = 0.003) times more likely also to have a first-degree relative diagnosed with breast cancer compared to those in the middle deciles. In addition, we found evidence for the genetic liability threshold model of breast cancer where among patients with a family history of breast cancer, pathogenic rare variant carriers had significantly lower PRS than non-carriers (p = 0.0205, Mann-Whitney U test) while for non-carriers every standard deviation increase in PRS corresponded to 4.52 years (95% CI 8.88-0.17, p = 0.042) earlier age of presentation. CONCLUSIONS: Overall, our study provides a framework to assess polygenic risk in an understudied population using lpWGS and identifies common variant risk as a factor independent of pathogenic variant carrier status for earlier age of onset of breast cancer among indigenous Arab breast cancer patients.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Arabs/genetics , Breast , Risk Factors , Exome
17.
Cell Rep Med ; 4(9): 101189, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37729872

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is molecularly heterogeneous, immune infiltrated, and selectively sensitive to immune checkpoint inhibition (ICI). However, the joint tumor-immune states that mediate ICI response remain elusive. We develop spatially aware deep-learning models of tumor and immune features to learn representations of ccRCC tumors using diagnostic whole-slide images (WSIs) in untreated and treated contexts (n = 1,102 patients). We identify patterns of grade heterogeneity in WSIs not achievable through human pathologist analysis, and these graph-based "microheterogeneity" structures associate with PBRM1 loss of function and with patient outcomes. Joint analysis of tumor phenotypes and immune infiltration identifies a subpopulation of highly infiltrated, microheterogeneous tumors responsive to ICI. In paired multiplex immunofluorescence images of ccRCC, microheterogeneity associates with greater PD1 activation in CD8+ lymphocytes and increased tumor-immune interactions. Our work reveals spatially interacting tumor-immune structures underlying ccRCC biology that may also inform selective response to ICI.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Deep Learning , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Phenotype
18.
Sci Adv ; 9(39): eadd9668, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37756410

ABSTRACT

Neuroendocrine tumors (NETs) are rare cancers that most often arise in the gastrointestinal tract and pancreas. The fundamental mechanisms driving gastroenteropancreatic (GEP)-NET growth remain incompletely elucidated; however, the heterogeneous clinical behavior of GEP-NETs suggests that both cellular lineage dynamics and tumor microenvironment influence tumor pathophysiology. Here, we investigated the single-cell transcriptomes of tumor and immune cells from patients with gastroenteropancreatic NETs. Malignant GEP-NET cells expressed genes and regulons associated with normal, gastrointestinal endocrine cell differentiation, and fate determination stages. Tumor and lymphoid compartments sparsely expressed immunosuppressive targets commonly investigated in clinical trials, such as the programmed cell death protein-1/programmed death ligand-1 axis. However, infiltrating myeloid cell types within both primary and metastatic GEP-NETs were enriched for genes encoding other immune checkpoints, including VSIR (VISTA), HAVCR2 (TIM3), LGALS9 (Gal-9), and SIGLEC10. Our findings highlight the transcriptomic heterogeneity that distinguishes the cellular landscapes of GEP-NET anatomic subtypes and reveal potential avenues for future precision medicine therapeutics.


Subject(s)
Intestinal Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Stomach Neoplasms , Humans , Neuroendocrine Tumors/genetics , Intestinal Neoplasms/genetics , Stomach Neoplasms/genetics , Pancreatic Neoplasms/genetics , Tumor Microenvironment/genetics
19.
Clin Cancer Res ; 29(22): 4613-4626, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37725576

ABSTRACT

PURPOSE: Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) or lymphoblastic lymphoma (T-LBL) have limited therapeutic options. Clinical use of genomic profiling provides an opportunity to identify targetable alterations to inform therapy. EXPERIMENTAL DESIGN: We describe a cohort of 14 pediatric patients with relapsed or refractory T-ALL enrolled on the Leukemia Precision-based Therapy (LEAP) Consortium trial (NCT02670525) and a patient with T-LBL, discovering alterations in platelet-derived growth factor receptor-α (PDGFRA) in 3 of these patients. We identified a novel mutation in PDGFRA, p.D842N, and used an integrated structural modeling and molecular biology approach to characterize mutations at D842 to guide therapeutic targeting. We conducted a preclinical study of avapritinib in a mouse patient-derived xenograft (PDX) model of FIP1L1-PDGFRA and PDGFRA p.D842N leukemia. RESULTS: Two patients with T-ALL in the LEAP cohort (14%) had targetable genomic alterations affecting PDGFRA, a FIP1-like 1 protein/PDGFRA (FIP1L1-PDGFRA) fusion and a novel mutation in PDGFRA, p.D842N. The D842N mutation resulted in PDGFRA activation and sensitivity to tested PDGFRA inhibitors. In a T-ALL PDX model, avapritinib treatment led to decreased leukemia burden, significantly prolonged survival, and even cured a subset of mice. Avapritinib treatment was well tolerated and yielded clinical benefit in a patient with refractory T-ALL. CONCLUSIONS: Refractory T-ALL has not been fully characterized. Alterations in PDGFRA or other targetable kinases may inform therapy for patients with refractory T-ALL who otherwise have limited treatment options. Clinical genomic profiling, in real time, is needed for fully informed therapeutic decision making.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Mutation , Receptor Protein-Tyrosine Kinases/genetics , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL