Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Rep ; 11(1): 21599, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732755

ABSTRACT

Aberration-corrected scanning transmission electron microscopy (STEM) is widely used for atomic-level imaging of materials but severely requires damage-free and thin samples (lamellae). So far, the preparation of the high-quality lamella from a bulk largely depends on manual processes by a skilled operator. This limits the throughput and repeatability of aberration-corrected STEM experiments. Here, inspired by the recent successes of "robot scientists", we demonstrate robotic fabrication of high-quality lamellae by focused-ion-beam (FIB) with automation software. First, we show that the robotic FIB can prepare lamellae with a high success rate, where the FIB system automatically controls rough-milling, lift-out, and final-thinning processes. Then, we systematically optimized the FIB parameters of the final-thinning process for single crystal Si. The optimized Si lamellae were evaluated by aberration-corrected STEM, showing atomic-level images with 55 pm resolution and quantitative repeatability of the spatial resolution and lamella thickness. We also demonstrate robotic fabrication of high-quality lamellae of SrTiO3 and sapphire, suggesting that the robotic FIB system may be applicable for a wide range of materials. The throughput of the robotic fabrication was typically an hour per lamella. Our robotic FIB will pave the way for the operator-free, high-throughput, and repeatable fabrication of the high-quality lamellae for aberration-corrected STEM.

2.
Ultramicroscopy ; 228: 113334, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34102569

ABSTRACT

In this study atom probe tomography was used to determine the implantation depth of four different plasma FIB ion species - xenon, argon, nitrogen, and oxygen - implanted at different acceleration voltages. It was found that lowering the beam energy reduces the implantation depth, but significant implantation was still observed for N, O and Ar at beam energies as low as 2 kV. Furthermore, nitrides and oxides were observed that were formed when using N and O. Xe had the lowest implantation depth compared to Ar, N and O when using the same conditions. No Xe ions were detected in the sample prepared at 2 kV. Experimentally-determined implantation depths were compared to calculated implantation depths. The experiments exhibited deeper-than-predicted ion implantation into the microstructure, but lower-than-predicted ion concentrations.

3.
ISME J ; 10(11): 2620-2632, 2016 11.
Article in English | MEDLINE | ID: mdl-27152937

ABSTRACT

The myxobacteria are a family of soil bacteria that form biofilms of complex architecture, aligned multilayered swarms or fruiting body structures that are simple or branched aggregates containing myxospores. Here, we examined the structural role of matrix exopolysaccharide (EPS) in the organization of these surface-dwelling bacterial cells. Using time-lapse light and fluorescence microscopy, as well as transmission electron microscopy and focused ion beam/scanning electron microscopy (FIB/SEM) electron microscopy, we found that Myxococcus xanthus cell organization in biofilms is dependent on the formation of EPS microchannels. Cells are highly organized within the three-dimensional structure of EPS microchannels that are required for cell alignment and advancement on surfaces. Mutants lacking EPS showed a lack of cell orientation and poor colony migration. Purified, cell-free EPS retains a channel-like structure, and can complement EPS- mutant motility defects. In addition, EPS provides the cooperative structure for fruiting body formation in both the simple mounds of M. xanthus and the complex, tree-like structures of Chondromyces crocatus. We furthermore investigated the possibility that EPS impacts community structure as a shared resource facilitating cooperative migration among closely related isolates of M. xanthus.


Subject(s)
Myxococcus xanthus/cytology , Myxococcus xanthus/metabolism , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Cell Membrane/genetics , Cell Membrane/metabolism , Myxococcus xanthus/genetics
4.
J Struct Biol ; 188(1): 55-60, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25160725

ABSTRACT

The ventricular human myocyte is spatially organized for optimal ATP and Ca(2+) delivery to sarcomeric myosin and ionic pumps during every excitation-contraction cycle. Comprehension of three-dimensional geometry of the tightly packed ultrastructure has been derived from discontinuous two-dimensional images, but has never been precisely reconstructed or analyzed in human myocardium. Using a focused ion beam scanning electron microscope, we created nanoscale resolution serial images to quantify the three-dimensional ultrastructure of a human left ventricular myocyte. Transverse tubules (t-tubule), lipid droplets, A-bands, and mitochondria occupy 1.8, 1.9, 10.8, and 27.9% of the myocyte volume, respectively. The complex t-tubule system has a small tortuosity (1.04±0.01), and is composed of long transverse segments with diameters of 317±24nm and short branches. Our data indicates that lipid droplets located well beneath the sarcolemma are proximal to t-tubules, where 59% (13 of 22) of lipid droplet centroids are within 0.50µm of a t-tubule. This spatial association could have an important implication in the development and treatment of heart failure because it connects two independently known pathophysiological alterations, a substrate switch from fatty acids to glucose and t-tubular derangement.


Subject(s)
Heart Ventricles/ultrastructure , Muscle Cells/ultrastructure , Myocardium/ultrastructure , Myocytes, Cardiac/ultrastructure , Adenosine Triphosphate/metabolism , Calcium/metabolism , Heart Ventricles/metabolism , Humans , Imaging, Three-Dimensional , Lipid Droplets/metabolism , Lipid Droplets/ultrastructure , Microscopy, Electron, Scanning , Muscle Cells/metabolism , Myocytes, Cardiac/metabolism , Sarcolemma/ultrastructure
5.
Microsc Microanal ; 20(3): 864-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24667066

ABSTRACT

Aberration-corrected scanning transmission electron microscopy images of the In(0.15)Ga(0.85)N active region of a blue light-emitting diode, acquired at ~0.1% of the electron dose known to cause electron beam damage, show no lateral compositional fluctuations, but do exhibit one to four atomic plane steps in the active layer's upper boundary. The area imaged was measured to be 2.9 nm thick using position averaged convergent beam electron diffraction, ensuring the sample was thin enough to capture compositional variation if it was present. A focused ion beam prepared sample with a very large thin area provides the possibility to directly observe large fluctuations in the active layer thickness that constrict the active layer at an average lateral length scale of 430 nm.

SELECTION OF CITATIONS
SEARCH DETAIL