Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
J Phys Condens Matter ; 25(35): 355003, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-23883551

ABSTRACT

Atomic oxygen adsorption on a pure aluminum terminated Al9Co2(001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a 'bridge' type site between the cluster entities exposed at the (001) surface termination. The Al-O bonding between the adsorbate and the substrate presents a covalent character, with s-p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al-O distances are in agreement with those reported in Al2O and Al2O3 oxides and for oxygen adsorption on Al(111).


Subject(s)
Aluminum Compounds/chemistry , Carbon Dioxide/chemistry , Models, Chemical , Models, Molecular , Oxygen/chemistry , Adsorption , Binding Sites , Computer Simulation , Molecular Conformation , Surface Properties
2.
Phys Rev Lett ; 110(7): 076102, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-25166385

ABSTRACT

We have investigated the structure of the Al(13)Fe(4)(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as "glue" atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al(13)Fe(4) catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster et al., Nat. Mater. 11, 690 (2012)].

SELECTION OF CITATIONS
SEARCH DETAIL