Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 551
Filter
1.
Sci Rep ; 14(1): 15478, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969765

ABSTRACT

Colorectal cancer (CRC) is a common digestive system tumor with high morbidity and mortality worldwide. At present, the use of computer-assisted colonoscopy technology to detect polyps is relatively mature, but it still faces some challenges, such as missed or false detection of polyps. Therefore, how to improve the detection rate of polyps more accurately is the key to colonoscopy. To solve this problem, this paper proposes an improved YOLOv5-based cancer polyp detection method for colorectal cancer. The method is designed with a new structure called P-C3 incorporated into the backbone and neck network of the model to enhance the expression of features. In addition, a contextual feature augmentation module was introduced to the bottom of the backbone network to increase the receptive field for multi-scale feature information and to focus on polyp features by coordinate attention mechanism. The experimental results show that compared with some traditional target detection algorithms, the model proposed in this paper has significant advantages for the detection accuracy of polyp, especially in the recall rate, which largely solves the problem of missed detection of polyps. This study will contribute to improve the polyp/adenoma detection rate of endoscopists in the process of colonoscopy, and also has important significance for the development of clinical work.


Subject(s)
Algorithms , Colonic Polyps , Colonoscopy , Colorectal Neoplasms , Humans , Colonoscopy/methods , Colonic Polyps/diagnosis , Colonic Polyps/diagnostic imaging , Colonic Polyps/pathology , Colorectal Neoplasms/diagnosis , Neural Networks, Computer , Semantics , Image Interpretation, Computer-Assisted/methods
2.
Int Immunopharmacol ; 139: 112707, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032472

ABSTRACT

Telmisartan, an angiotensin II type 1 receptor (AT1R) blocker, exhibits broad anti-tumor activity. However, in vitro, anti-proliferative effects are shown at doses far beyond the therapeutic plasma concentration. Considering the role of tumor microenvironment in glioma progression, glioma-astrocyte co-cultures were employed to test the anti-tumor potential of low-dose telmisartan. When a high dose was required for a direct anti-proliferative effect on glioma cell lines, a low dose significantly inhibited glioma cell proliferation and migration in the co-culture system. Under co-culture conditions, upregulated IL-6 expression in astrocytes played a critical role in glioma progression. Silencing IL-6 in astrocytes or IL-6R in glioma cells reduced proliferation and migration. Telmisartan (5 µM) inhibited astrocytic IL-6 expression, and its anti-tumor effects were reversed by silencing IL-6 or IL-6R and inhibiting signal transducer and activator of transcription 3 (STAT3) activity in glioma cells. Moreover, the telmisartan-driven IL-6 downregulation was not imitated by losartan, an AT1R blocker with little capacity of peroxisome proliferator-activated receptor-gamma (PPARγ) activation, but was eliminated by a PPARγ antagonist, indicating that the anti-glioma effects of telmisartan rely on its PPARγ agonistic activity rather than AT1R blockade. This study highlights the importance of astrocytic IL-6-mediated paracrine signaling in glioma growth and the potential of telmisartan as an adjuvant therapy for patients with glioma, especially those with hypertension.

3.
Nat Med ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030266

ABSTRACT

Primary diabetes care and diabetic retinopathy (DR) screening persist as major public health challenges due to a shortage of trained primary care physicians (PCPs), particularly in low-resource settings. Here, to bridge the gaps, we developed an integrated image-language system (DeepDR-LLM), combining a large language model (LLM module) and image-based deep learning (DeepDR-Transformer), to provide individualized diabetes management recommendations to PCPs. In a retrospective evaluation, the LLM module demonstrated comparable performance to PCPs and endocrinology residents when tested in English and outperformed PCPs and had comparable performance to endocrinology residents in Chinese. For identifying referable DR, the average PCP's accuracy was 81.0% unassisted and 92.3% assisted by DeepDR-Transformer. Furthermore, we performed a single-center real-world prospective study, deploying DeepDR-LLM. We compared diabetes management adherence of patients under the unassisted PCP arm (n = 397) with those under the PCP+DeepDR-LLM arm (n = 372). Patients with newly diagnosed diabetes in the PCP+DeepDR-LLM arm showed better self-management behaviors throughout follow-up (P < 0.05). For patients with referral DR, those in the PCP+DeepDR-LLM arm were more likely to adhere to DR referrals (P < 0.01). Additionally, DeepDR-LLM deployment improved the quality and empathy level of management recommendations. Given its multifaceted performance, DeepDR-LLM holds promise as a digital solution for enhancing primary diabetes care and DR screening.

4.
Molecules ; 29(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38999159

ABSTRACT

Poly(p-phenylene ethynylene) (PPE) molecular wires are one-dimensional materials with distinctive properties and can be applied in electronic devices. Here, the approach called first-principles quantum transport is utilized to investigate the PPE molecular wire field-effect transistor (FET) efficiency limit through the geometry of the gate-all-around (GAA) instrument. It is observed that the n-type GAA PPE molecular wire FETs with a suitable gate length (Lg = 5 nm) and underlap (UL = 1, 2, 3 nm) can gratify the on-state current (Ion), power dissipation (PDP), and delay period (τ) concerning the conditions in 2028 to achieve the higher performance (HP) request of the International Roadmap for Device and Systems (IRDS, 2022 version). In contrast, the p-type GAA PPE molecular wire FETs with Lg = 5, 3 nm, and UL of 1, 2, 3 nm could gratify the Ion, PDP, and τ concerning the 2028 needs to achieve the HP request of the IRDS in 2022, while Lg = 5 and UL = 3 nm could meet the Ion and τ concerning the 2028 needs to achieve the LP request of the IRDS in 2022. More importantly, this is the first one-dimensional carbon-based ambipolar FET. Therefore, the GAA PPE molecular wire FETs could be a latent choice to downscale Moore's law to 3 nm.

5.
Heliyon ; 10(12): e32840, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975195

ABSTRACT

Background: The relationship between air pollution and cardiovascular diseases (CVDs) has garnered significant interest among researchers globally. This study employed bibliometric analysis to provide an overview of current research on the association between air pollution and CVDs, offering a comprehensive analysis of global research trends in this area. Methods: An exhaustive scrutiny of literature pertaining to the nexus between air pollution and CVDs from 2012 to 2022 was conducted through rigorous screening of the Web of Science Core Collection (WoSCC). Publications were exclusively considered in English. Subsequently, sophisticated analytical tools including CiteSpace 6.2.4R, Vosviewer 1.6.19, HistCite 2.1, Python 3.7.5, Microsoft Charticulator, and Bibliometrix Online Analysis Platform were deployed to delineate research trends in this domain. Results: The analysis of the dataset, comprising 1710 documents, unveiled a consistent escalation in scientific publications, peaking in 2022 with a total of 248 publications. Moreover, Environmental Science and Toxicology stood out as the predominant categories. Examination of keyword frequency highlighted the terms 'air pollution', 'cardiovascular disease', and 'particulate matter' as the most prevalent. Notably, the most prolific entities, in terms of authors, journals, organizations, and countries, were identified as Robert D. Brook, Environmental Health Perspectives, Harvard University, and the United States, respectively. Conclusion: The findings presented a notable increase in high-quality publications on this topic over the past 11 years, suggesting a positive outlook for future research. The study concluded with an examination of three key themes in research trends related to air pollution and CVDs: the initial physiological response to pollutant exposure, the pathways through which pollutants are transmitted, and the subsequent effects on target organs. Additionally, various air pollutants, such as particulate matter, nitric dioxide, and ozone, could contribute to multiple CVDs, including coronary heart disease, hypertension, and heart failure. Although some hypotheses have been put forward, the mechanisms of air pollution-related CVDs still need to be explored in the future.

6.
Open Life Sci ; 19(1): 20220923, 2024.
Article in English | MEDLINE | ID: mdl-39071492

ABSTRACT

The aim of this study is to assess the impact of serum magnesium (Mg) levels on prognostic outcomes in patients with non-small cell lung cancer (NSCLC) undergoing treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI). A cohort comprising 91 patients with NSCLC with epidermal growth factor receptor mutations received EGFR-TKI therapy. Assessments of liver and kidney function and electrolyte levels were conducted before treatment initiation and after completing two cycles of EGFR-TKI therapy. Data on variables such as age, gender, presence of distant metastasis, smoking history, other therapeutic interventions, and the specific TKI used were collected for analysis. Cox regression analysis revealed that patients with higher Mg levels prior to EGFR-TKI therapy had significantly longer progression-free survival (PFS) and overall survival (OS). Elevated Mg levels remained predictive of PFS and OS after two cycles of EGFR-TKI therapy. Multiple regression analysis confirmed these findings. Additionally, it was observed that smokers might represent a unique population, demonstrating a correlation between OS and Mg levels. Our findings indicate that serum Mg level is a prognostic factor in patients with NSCLC undergoing EGFR-TKI therapy. This may provide new insights into the underlying mechanisms of EGFR-TKI therapy related to electrolyte balance.

7.
J Am Chem Soc ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078367

ABSTRACT

Stereochemically defined organofluorine compounds are central to drug discovery and development. Here, we present a catalytic cross-metathesis method for the synthesis of Z-trisubstituted olefins that contain a Cl- and a CF3-bound carbon terminus. Notably, the process is stereoselective, which is in contrast to the existing stereoretentive strategies that also involve a trisubstituted olefin as starting material. Reactions are catalyzed by a Mo monoaryloxide pyrrolide alkylidene, involve a trisubstituted alkene and gem-Cl,CF3-substituted alkene, and are fully Z-selective. Catalytic cross-coupling can be used to convert the C-Cl bond of the trisubstituted olefin to C-B, C-D, and different C-C bonds. We elucidate the role of Cl,CF3-disubstituted Mo alkylidenes. Experimental and computational (DFT) data show that in some instances a disubstituted alkylidene is formed and then transformed to a more active complex. In other cases, the Cl,CF3-disubstituted alkylidene is a direct participant in a catalytic cycle. The studies described shed new light on the chemistry of high oxidation-state disubstituted alkylidenes-scarcely investigated entities likely to be pivotal to approaches for stereocontrolled synthesis of tetrasubstituted alkenes through olefin metathesis.

8.
Int J Gen Med ; 17: 2475-2487, 2024.
Article in English | MEDLINE | ID: mdl-38826509

ABSTRACT

Purpose: In essential hypertensive patients, cardiac remodeling may be associated with the risk of renal damage in the future which can be reflected by the estimated glomerular filtration rate (eGFR). Through retrospective analysis, we evaluated the potential of cardiac remodeling based on echocardiographic measurements to predict the risk of renal damage in the future with hypertensive patients. Methods: We retrospectively analyzed the relationship between the changes of left heart structure and function and renal damage for 510 patients with hypertension, who were diagnosed between 2016 to 2022. Demography data, clinical data, blood samples and echocardiographic variables were used for survival analysis, and the Cox proportional hazards regression model was used. Results: In our study, we found that age, serum creatinine (SCR), creatine kinase isoenzyme MB (CK MB), abnormal high-sensitivity troponin I (TNI), interventricular septum thickness (IVST) and left ventricular ejection fraction (LVEF) could be used as independent predictors in risk of renal impairment in hypertensive patients (p<0.05). Combined in a score where one point was given for the presence of each of the parameters above, this score could strongly predict renal function damage in the future (p<0.05). In receiver operating characteristics (ROC) curve analyses, the area under the curve of the risk factor score was 0.849 (P<0.001). Conclusion: In essential hypertensive patients, LVEF and IVST can predict the risk of future adverse renal outcomes. Moreover, combining risk variables into a simplified score may enable to assess the risk of renal impairment in hypertensive patients at an early stage.

9.
Exp Ther Med ; 28(1): 290, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38827472

ABSTRACT

The present study aimed to compare the differences between 3D-printed porous titanium and polyether ether ketone (PEEK) interbody fusion cages for anterior cervical discectomy and fusion (ACDF). Literature on the application of 3D-printed porous titanium and PEEK interbody fusion cages for ACDF was searched in the PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Wanfang and VIP databases. A total of 1,181 articles were retrieved and 12 were finally included. The Cochrane bias risk assessment criteria and Newcastle-Ottawa scale were used for quality evaluation and Review Manager 5.4 was used for data analysis. The 3D cage group was superior to the PEEK cage group in terms of operative time [mean difference (MD): -7.68; 95% confidence interval (CI): -11.08, -4.29; P<0.00001], intraoperative blood loss (MD: -6.17; 95%CI: -10.56, -1.78; P=0.006), hospitalization time (MD: -0.57; 95%CI: -0.86, -0.28: P=0.0001), postoperative complications [odds ratio (OR): 0.35; 95%CI: 0.15, 0.80; P=0.01], C2-7 Cobb angle (MD: 2.85; 95%CI: 1.45, 4.24; P<0.0001), intervertebral space height (MD: 1.20; 95%CI: 0.54, 1.87; P=0.0004), Japanese Orthopaedic Association Assessment of Treatment (MD: 0.69; 95%CI: 0.24, 1.15; P=0.003) and visual analogue scale score (MD: -0.43; 95%CI: -0.78, -0.07; P=0.02). The difference was statistically significant, while there was no significant difference between the two groups in terms of fusion rate (OR: 1.74; 95%CI: 0.71, 4.27; P=0.23). The use of 3D-printed porous titanium interbody fusion cage in ACDF has the advantages of short operation time, less bleeding loss, shorter hospitalization time and fewer postoperative complications. It can better maintain the cervical curvature and intervertebral height, relieve pain and accelerate postoperative functional recovery.

10.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1016-1024, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884236

ABSTRACT

In this study, we explored the changes in plant community diversity and their relationship with soil factors under shrub encroachment pressure by selecting four marsh areas in Sanjiang Plain with different degrees of shrub cover (a, 0≤a≤100%), including marsh with no shrub encroachment (a=0), light shrub encroachment (0

Subject(s)
Biodiversity , Soil , Wetlands , China , Soil/chemistry , Population Dynamics , Poaceae/growth & development , Plants/classification , Plant Development
11.
Angew Chem Int Ed Engl ; : e202409435, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945832

ABSTRACT

Visualizing lithium (Li) ions and understanding Li plating/stripping processes as well as evolution of solid electrolyte interface (SEI) are critical for optimizing all-solid-state Li metal batteries (ASSLMB). However, the buried solid-solid interfaces present a challenge for detection which preclude the employment of multiple analysis techniques. Herein, by employing complementary in situ characterizations, morphological/chemical evolution, Li plating/stripping dynamics and SEI dynamics were efficiently decoupled and Li ion behavior at interface between different solid-state electrolytes (SSE) was successfully detected. The innovative combining experiments of in situ atomic force microscopy and in situ X-ray photoelectron spectroscopy on Li metal anode revealed interfacial morphological/chemical evolution and decoupled Li plating/stripping process from SEI evolution. Though Li plating speed in Li10GeP2S12 (LGPS) was higher than Li3PS4 (LPS), speed of SSE decomposition was similar and ~85% interfacial SSE turned into SEI during plating and remained unchanged in stripping. To leverage strengths of different SSEs, an LPS-LGPS-LPS sandwich electrolyte was developed, demonstrating enhanced ionic conductivity and improved interfacial stability with less SSE decomposition (25%). Using in situ Kelvin Probe Force Microscopy, Li-ion behavior at interface between different SSEs was effectively visualized, uncovering distribution of Li ions at LGPS|LPS interface under different potentials.

12.
Cells Dev ; : 203924, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692409

ABSTRACT

While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals. We report 425 regulatory regions conserved with human and globally associated to skeletogenic genes. Of these, 35 regions have been shown to impact human skeletal phenotypes by GWAS, including one trps1 enhancer and the runx2 promoter, two genes which are respectively involved in trichorhinophalangeal syndrome type I and cleidocranial dysplasia. Intriguingly, 60 osteoblastic NFRs also align to the genome of the elephant shark, a species lacking osteoblasts and bone tissue. To tackle this paradox, we chose to focus on dlx5 because its conserved promoter, known to integrate regulatory inputs during mammalian osteogenesis, harbours an osteoblast-specific NFR in both frog and human. Hence, we show that dlx5 is expressed in Xt and elephant shark odontoblasts, supporting a common cellular and genetic origin of bone and dentine. Taken together, our work (i) unravels the Xt osteogenic regulatory landscape, (ii) illustrates how cross-species comparisons harvest data relevant to human biology and (iii) reveals that a set of genes including bnc2, dlx5, ebf3, mir199a, nfia, runx2 and zfhx4 drove the development of a primitive form of mineralized skeletal tissue deep in the vertebrate lineage.

13.
PLoS One ; 19(5): e0302753, 2024.
Article in English | MEDLINE | ID: mdl-38739634

ABSTRACT

Leprosy has a high rate of cripplehood and lacks available early effective diagnosis methods for prevention and treatment, thus novel effective molecule markers are urgently required. In this study, we conducted bioinformatics analysis with leprosy and normal samples acquired from the GEO database(GSE84893, GSE74481, GSE17763, GSE16844 and GSE443). Through WGCNA analysis, 85 hub genes were screened(GS > 0.7 and MM > 0.8). Through DEG analysis, 82 up-regulated and 3 down-regulated genes were screened(|Log2FC| > 3 and FDR < 0.05). Then 49 intersection genes were considered as crucial and subjected to GO annotation, KEGG pathway and PPI analysis to determine the biological significance in the pathogenesis of leprosy. Finally, we identified a gene-pathway network, suggesting ITK, CD48, IL2RG, CCR5, FGR, JAK3, STAT1, LCK, PTPRC, CXCR4 can be used as biomarkers and these genes are active in 6 immune system pathways, including Chemokine signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, T cell receptor signaling pathway, Natural killer cell mediated cytotoxicity and Leukocyte transendothelial migration. We identified 10 crucial gene markers and related important pathways that acted as essential components in the etiology of leprosy. Our study provides potential targets for diagnostic biomarkers and therapy of leprosy.


Subject(s)
Biomarkers , Gene Regulatory Networks , Leprosy , Leprosy/genetics , Leprosy/microbiology , Humans , Biomarkers/metabolism , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling , Protein Interaction Maps/genetics , Signal Transduction
14.
RSC Adv ; 14(25): 17491-17497, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38818364

ABSTRACT

A dual-signal optical sensing platform was successfully developed for the determination of ascorbic acid (AA) based on blue fluorescent carbon dots (CDs) and manganese dioxide nanosheets (MnO2 NSs) with strong Tyndall effect (TE) scattering and fluorescence quenching capabilities. In this nanosystem, CDs-MnO2 NS composites were employed as probes to evaluate the AA concentration. Owing to the strong reduction, the presence of the target AA could reduce the MnO2 NSs to Mn2+ and induce the degradation of the MnO2 NSs, resulting in a significant decrease in the TE scattering intensity of the MnO2 NSs and the fluorescence recovery of the CDs. Therefore, a novel optical sensor based on TE scattering and fluorescence dual detectors was developed for the sensitive determination of AA. Under optimized conditions, the limits of detection (LODs) of the two modes were 113 and 3 nM, respectively. Furthermore, the dual-signal optical sensing platform was successfully applied for the detection of AA in human serum.

15.
Int J Biol Macromol ; 270(Pt 2): 132240, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744360

ABSTRACT

Current treatment of snakebite relies on immunoglobulin-rich antivenoms. However, production of these antivenoms is complicated and costly. Aptamers - single-stranded DNAs or RNAs with specific folding structures that bind to specific target molecules - represent excellent alternatives or complements to antibody-based therapeutics. However, no studies have systematically assessed the feasibility of using aptamers to mitigate venom-induced toxicity in vivo. ß-bungarotoxin is the predominant protein responsible for the toxicity of the venom of Bungarus multicinctus, a prominent venomous snake inhabiting Taiwan. In this study, we reported the screening and optimization of a DNA aptamer against ß-bungarotoxin and tested its utility in a mouse model. After 14 rounds of directed evolution of ligands by exponential enrichment, an aptamer, called BB3, displaying remarkable binding affinity and specificity for ß-bungarotoxin was obtained. Following structural prediction and point-modification experiments, BB3 underwent truncation and was modified with 2'-O-methylation and a 3'-inverted dT. This optimized aptamer showed sustained, high-affinity binding for ß-bungarotoxin and exhibited remarkable nuclease resistance in plasma. Importantly, administration of this optimized aptamer extended the survival time of mice treated with a lethal dose of ß-bungarotoxin. Collectively, our data provide a compelling illustration of the potential of aptamers as promising candidates for development of recombinant antivenom therapies.


Subject(s)
Aptamers, Nucleotide , Bungarotoxins , Animals , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/chemistry , Bungarotoxins/pharmacology , Bungarotoxins/chemistry , Mice , Disease Models, Animal , Bungarus , Snake Bites/drug therapy , SELEX Aptamer Technique
16.
Stress Health ; : e3424, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801335

ABSTRACT

This study uses a resource perspective that combines theories used commonly to explore recovery experiences as a theoretical framework and investigate the effects of recovery at the beginning of the workday on exhaustion and vigour at the end of the workday, with workflow in the morning as a mediator. An experience sampling method was used to collect data from 84 fulltime employees. Participants received three survey links each workday over a 2-week period, resulting in 837 days-level and 2517 data points. Hierarchical linear regression was used to test hypotheses, with results suggesting that greater recovery at the beginning of the workday correlated negatively with exhaustion and positively with vigour at the end of the workday. Recovery at the beginning correlated positively with flow state in the morning, and flow state correlated positively with vigour at the end of the workday. Flow state in the morning mediated the relationship between recovery level at the beginning and vigour at the end of the workday. These findings suggest the importance of recovery and the effects of flow state on employees' vigour.

17.
Micromachines (Basel) ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675357

ABSTRACT

This paper presents an ultra-wideband transformer feedback (TFB) monolithic microwave integrated circuit (MMIC) power amplifier (PA) developed using a 0.25 µm gallium nitride (GaN) process. To broaden the bandwidth, a drain-to-gate TFB technique is employed in this PA design, achieving a 117% relative -3 dB bandwidth, extending from 5.4 GHz to 20.3 GHz. At a 28 V supply, the designed PA circuit achieves an output power of 25.5 dBm and a 14 dB small-signal gain in the frequency range of 6 to 19 GHz. Within the 6 to 19 GHz frequency range, the small-signal gain exhibits a flatness of less than 0.78 dB. The PA chip occupies an area of 1.571 mm2. This work is the first to design a power amplifier with on-chip transformer feedback in a compound semiconductor MMIC process, and it enables the use of the widest bandwidth power amplifier on-chip transformer matching network.

18.
Exp Ther Med ; 27(4): 162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38476911

ABSTRACT

The present study aimed to compare the differences between minimally invasive transforaminal lumbar fusion (MIS-TLIF) and open transforaminal lumbar fusion (TLIF) for multi-segmental lumbar degenerative disease regarding intraoperative indices and postoperative outcomes. PubMed, Web of Science, Embase, CNKI, Wanfang and VIP databases were searched for literature on MIS-TLIF and open TLIF in treating multi-segmental lumbar degenerative diseases. Of the 1,608 articles retrieved, 10 were included for final analysis. The Newcastle-Ottawa Scale and Review Manager 5.4 were used for quality evaluation and data analysis, respectively. The MIS-TLIF group was superior to the open TLIF group regarding intraoperative blood loss [95% confidence interval (CI): -254.33,-157.86; P<0.00001], postoperative in-bed time (95%CI: -3.49,-2.76; P<0.00001), hospitalization time (95%CI: -5.14,-1.78; P<0.0001) and postoperative leg pain Visual Analog Scale score (95%CI: -0.27,-0.13; P<0.00001). The fluoroscopy frequency for MIS-TLIF (95%CI: 2.07,6.12; P<0.0001) was significantly higher than that for open TLIF. The two groups had no significant differences in operation time, postoperative drainage volume, postoperative complications, fusion rate, or Oswestry Disability Index score. In treating multi-segmental lumbar degenerative diseases, MIS-TLIF has the advantages of less blood loss, shorter bedtime and hospitalization time and improved early postoperative efficacy; however, open TLIF has a lower fluoroscopy frequency.

19.
Front Biosci (Landmark Ed) ; 29(3): 100, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38538277

ABSTRACT

BACKGROUND: As a dedifferentiated tumor, small cell endometrial neuroendocrine tumors (NETs) are rare and frequently diagnosed at an advanced stage with a poor prognosis. Current treatment recommendations are often extrapolated from histologically similar tumors in other sites or based on retrospective studies. The exploration for diagnostic and therapeutic markers in small cell NETs is of great significance. METHODS: In this study, we conducted single-cell RNA sequencing on a specimen obtained from a patient diagnosed with small cell endometrial neuroendocrine carcinoma (SCNEC) based on pathology. We revealed the cell map and intratumoral heterogeneity of the cancer cells through data analysis. Further, we validated the function of ISL LIM Homeobox 1 (ISL1) in vitro in an established neuroendocrine cell line. Finally, we examined the association between ISL1 and tumor staging in small cell lung cancer (SCLC) patient samples. RESULTS: We observed the significant upregulation of ISL1 expression in tumor cells that showed high expression of the neuroepithelial markers. Additionally, in vitro cell function experiments demonstrated that the high ISL1 expression group exhibited markedly higher cell proliferation and migration abilities compared to the low expression group. Finally, we showed that the expression level of ISL1 was correlated with SCLC stages. CONCLUSIONS: ISL1 protein in NETs shows promise as a potential biomarker for diagnosis and treatment.


Subject(s)
Carcinoma, Neuroendocrine , Neuroendocrine Tumors , Female , Humans , Transcription Factors/genetics , Retrospective Studies , Single-Cell Gene Expression Analysis , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/analysis , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Endometrium/chemistry , Endometrium/metabolism , Endometrium/pathology , Carcinoma, Neuroendocrine/diagnosis , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/therapy
20.
BMC Geriatr ; 24(1): 216, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431549

ABSTRACT

BACKGROUND: The early detection of dementia depends on efficient methods for the assessment of cognitive capacity. Existing cognitive screening tools are ill-suited to the differentiation of cognitive status, particularly when dealing with early-stage impairment. METHODS: The study included 8,979 individuals (> 50 years) with unimpaired cognitive functions, mild cognitive impairment (MCI), or dementia. This study sought to determine optimal cutoffs values for the Cognitive Abilities Screening Instrument (CASI) aimed at differentiating between individuals with or without dementia as well as between individuals with or without mild cognitive impairment. Cox proportional hazards models were used to evaluate the value of CASI tasks in predicting conversion from MCI to all-cause dementia, dementia of Alzheimer's type (DAT), or to vascular dementia (VaD). RESULTS: Our optimized cutoff scores achieved high accuracy in differentiating between individuals with or without dementia (AUC = 0.87-0.93) and moderate accuracy in differentiating between CU and MCI individuals (AUC = 0.67 - 0.74). Among individuals without cognitive impairment, scores that were at least 1.5 × the standard deviation below the mean scores on CASI memory tasks were predictive of conversion to dementia within roughly 2 years after the first assessment (all-cause dementia: hazard ratio [HR] = 2.81 - 3.53; DAT: 1.28 - 1.49; VaD: 1.58). Note that the cutoff scores derived in this study were lower than those reported in previous studies. CONCLUSION: Our results in this study underline the importance of establishing optimal cutoff scores for individuals with specific demographic characteristics and establishing profiles by which to guide CASI analysis.


Subject(s)
Alzheimer Disease , Cognition Disorders , Cognitive Dysfunction , Dementia, Vascular , Humans , Alzheimer Disease/diagnosis , Taiwan/epidemiology , Cognitive Dysfunction/diagnosis , Cognition Disorders/diagnosis , Dementia, Vascular/diagnosis , Cognition , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL