Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
Anal Chem ; 96(32): 13226-13233, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39096242

ABSTRACT

Small interfering RNA (siRNA) highlights the immense therapeutic potential for cancer treatment. The major challenge in siRNA therapy is the effective RNA nanodrug delivery system, which is facilitated by the ligand and the carrier. In this study, we analyzed the binding specificity of linear RGD and circular RGD to αVß3 integrins by mapping the morphology using super-resolution direct stochastic optical reconstruction microscopy. Meanwhile, the binding dynamics was investigated using single-molecule force spectroscopy. Then, the effects of the ligand and carrier on RNA nanodrug cell entry dynamic parameters were evaluated at the single particle level by the force tracing technique. Furthermore, the delivery efficiency of RNA nanodrugs was assessed using AFM-based nanoindentation at the single cell level. This report will provide valuable insights for rational design strategies aiming to achieve improved efficiency for nanodrug delivery systems.


Subject(s)
RNA, Small Interfering , Ligands , Humans , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/chemistry , Oligopeptides/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Microscopy, Atomic Force , Nanoparticles/chemistry
2.
Int Immunopharmacol ; 140: 112825, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39079347

ABSTRACT

BACKGROUND: Exosomes derived from endometrial regenerative cells (ERC-Exos) can inherit the immunomodulatory function from ERCs, however, whether ERC-Exos exhibit such effect on inflammatory bowel diseases with mucosal immune dysregulation has not been explored. Insulin-like growth factor-Ⅱ (IGF2) is considered to possess the potential to induce an anti-inflammatory phenotype in immune cells. In this study, the contribution of IGF2 in mediating the protective efficacy of ERC-Exos on colitis was investigated. METHODS: Lentiviral transfection was employed to obtain IGF2-specific knockout ERC-Exos (IGF2-/--ERC-Exos). Experimental colitis mice induced by dextran sulfate sodium (DSS) were divided into the phosphate-buffered saline (untreated), ERC-Exos-treated and IGF2-/--ERC-Exos-treated groups. Colonic histopathological analysis and intestinal barrier function were explored. The infiltration of CD4+ T cells and dendritic cells (DCs) were analyzed by immunofluorescence staining and flow cytometry. The maturation and function of bone marrow-derived dendritic cells (BMDCs) in different exosome administrations were evaluated by flow cytometry, ELISA and the coculture system, respectively. RESULTS: Compared with the untreated group, ERC-Exos treatment significantly attenuated DSS-induced weight loss, bloody stools, shortened colon length, pathological damage, as well as repaired the weakened intestinal mucosal barrier, including promoting the goblet cells retention, restoring the intestinal barrier integrity and enhancing the expression of tight junction proteins, while the protective effect of exosomes was impaired with the knockout of IGF2 in ERC-Exos. Additionally, IGF2-expressing ERC-Exos decreased the proportions of Th1 and Th17, increased the proportions of Treg, as well as attenuated DC infiltration and maturation in mesenteric lymph nodes and lamina propria of the colitis mice. ERC-Exos were also observed to be phagocytosed by BMDCs and IGF2 is responsible for the modulating effect of ERC-Exos on BMDCs in vitro. CONCLUSIONS: Exosomes derived from ERCs can exert a therapeutic effect on experimental colitis with remarkable alleviation of the intestinal barrier damage and the abnormal mucosal immune responses. We emphasized that IGF2 plays a critical role for ERC-Exos mediated immunomodulatory function and protection against colitis.

3.
Mediators Inflamm ; 2024: 3282679, 2024.
Article in English | MEDLINE | ID: mdl-38962170

ABSTRACT

Ulcerative colitis (UC) is a chronic intestinal inflammatory disease with complex etiology. Interleukin-35 (IL-35), as a cytokine with immunomodulatory function, has been shown to have therapeutic effects on UC, but its mechanism is not yet clear. Therefore, we constructed Pichia pastoris stably expressing IL-35 which enables the cytokines to reach the diseased mucosa, and explored whether upregulation of T-cell protein tyrosine phosphatase (TCPTP) in macrophages is involved in the mechanisms of IL-35-mediated attenuation of UC. After the successful construction of engineered bacteria expressing IL-35, a colitis model was successfully induced by giving BALB/c mice a solution containing 3% dextran sulfate sodium (DSS). Mice were treated with Pichia/IL-35, empty plasmid-transformed Pichia (Pichia/0), or PBS by gavage, respectively. The expression of TCPTP in macrophages (RAW264.7, BMDMs) and intestinal tissues after IL-35 treatment was detected. After administration of Pichia/IL-35, the mice showed significant improvement in weight loss, bloody stools, and shortened colon. Colon pathology also showed that the inflammatory condition of mice in the Pichia/IL-35 treatment group was alleviated. Notably, Pichia/IL-35 treatment not only increases local M2 macrophages but also decreases the expression of inflammatory cytokine IL-6 in the colon. With Pichia/IL-35 treatment, the proportion of M1 macrophages, Th17, and Th1 cells in mouse MLNs were markedly decreased, while Tregs were significantly increased. In vitro experiments, IL-35 significantly promoted the expression of TCPTP in macrophages stimulated with LPS. Similarly, the mice in the Pichia/IL-35 group also expressed more TCPTP than that of the untreated group and the Pichia/0 group.


Subject(s)
Interleukins , Macrophages , Mice, Inbred BALB C , Animals , Male , Mice , Colitis/chemically induced , Colitis/metabolism , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Dextran Sulfate , Disease Models, Animal , Interleukins/metabolism , Macrophages/metabolism , RAW 264.7 Cells , Saccharomycetales , Up-Regulation , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism
4.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2953-2964, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041155

ABSTRACT

A sensitive and efficient ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) approach was established. Based on the self-developed information library, the chemical components from Euodiae Fructus were systematically characterized and identified. The chromatographic separation conditions(e. g., stationary phase,mobile phase, column temperature, and elution gradient) and MS detection conditions(nozzle voltage, capillary voltage, fragmentor,and collision energy) were optimized. Ultimately, an HSS T3 column(2. 1 mm×100 mm, 1. 8 µm) maintained at 35 ℃ was used,and 0. 1% formic acid water-acetonitrile at the flow rate of 0. 4 m L·min~(-1) was used as the mobile phase. Electrospray ionization was adopted to collect the positive and negative ion mass spectrometry data in Auto MS/MS mode. According to the reference compound comparison, fragment ion information interpretation, literature, and retrieval in the self-developed information library, 92 compounds were characterized or derived from the decoction of Euodiae Fructus, including 33 alkaloids, 23 flavonoids, 12 terpenoids, 12phenylpropanoids, and 12 others. Among them, 17 compounds were identified by comparison with the reference compounds, and 11compounds were unreported from Euodiae Fructus. This study realizes the rapid characterization and identification of multi-class chemical components in the decoction of Euodiae Fructus and provides a reference for the studies regarding its effective substances and quality control.


Subject(s)
Drugs, Chinese Herbal , Evodia , Fruit , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Fruit/chemistry , Evodia/chemistry , Mass Spectrometry/methods , Tandem Mass Spectrometry/methods , Molecular Structure , Spectrometry, Mass, Electrospray Ionization/methods
5.
Talanta ; 278: 126514, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38986310

ABSTRACT

Molecularly imprinted electrochemical sensor is a kind of convenient, fast, and stable analyzer, but the conductivity of electrode materials and their affinity with the analyte affect its performance. A proton acid (PSS, SA, SSA) doping method was proposed to improve the electrochemical performance of the polypyrrole molecularly imprinted polymer (PPy-MIP), which promoted the electropolymerization of pyrrole, reduced the charge transfer resistance, and increased the electrochemical surface area. In terms of both improving conductivity and affinity, the response of the proton acids doped the polypyrrole molecularly imprinted electrochemical sensors (PPy-MIECS) to urea was improved by 25-fold (PSS), 5-fold (SA), and 3-fold (SSA) over that of PPy-MIECS. In addition, the PSS-PPy-MIECS was validated for the practical application with a linear detection range from 0.1 mM to 100 mM, high selectivity (α = 39.73), reusability (RSD% = 4.54 %), reproducibility (RSD% = 0.93 %), and stability (11 days). The advantage of proton acid doping method in PSS-PEDOT-MIECS to urea and PSS-PPy-MIECS to glucose extended its application in the performance enhancement of MIECS design.

6.
Anal Chem ; 96(29): 11673-11681, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38994836

ABSTRACT

Drug resistance in multiple myeloma (MM) poses a significant challenge to treatment efficacy, primarily attributed to P-glycoprotein (P-gp) dysfunction. This study delves into the elusive spatial organization of P-gp, aiming to enhance our understanding of its role in MM drug resistance by exploring the intricate relationship between molecular function and spatial arrangement. Employing super-resolution imaging of P-gp with the inhibitor probe Tariquidar-TAMR labeling on MM cell membranes, the research uncovered a more pronounced clustering distribution of P-gp in drug-resistant cells (MM1R) compared to drug-sensitive counterparts (MM1S). Further exploration revealed the clustering distribution of P-gp was heightened as cellular drug resistance increased in hypoxic condition, directly emphasizing the strong correlation between P-gp cluster morphology and drug resistance. Additionally, stable P-gp cluster formation was influenced by cross-linking of membrane carbohydrates, and disrupting these glycoprotein clusters could reduce cellular drug resistance, suggesting that altering distribution patterns of P-gp can modulate drug responsiveness. Finally, dexamethasone (Dex) treatment was revealed to enhance P-gp clustering distribution, particularly in MM1S cells, indicating that change degree in P-gp distribution correlate with the modifiable space of cellular drug responsiveness. This study provides insights into the correlation between P-gp assembly and cellular drug responsiveness, deepening our understanding of functional changes in MM drug resistance and offering valuable perspectives for overcoming this challenge.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Drug Resistance, Neoplasm , Multiple Myeloma , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Humans , Drug Resistance, Neoplasm/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Optical Imaging , Cell Membrane/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Quinolines
7.
J Sep Sci ; 47(14): e2400354, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034839

ABSTRACT

The measurement of data repeatability in small-molecule metabolites acquired within and among different liquid chromatography-mass spectrometry (LC-MS) platforms is crucial for data sharing or data transfer in natural products research. This work was designed to investigate and evaluate the separation and detection performance of three commercial high-resolution LC-MS platforms (e.g., Agilent 6550 QTOF, Waters Vion IM-QTOF, and Thermo Scientific Orbitrap Exploris 120) using 68 ginsenoside references and the extract of Panax ginseng leaf. The retention time (tR), measured on these three platforms (under the same chromatography condition), showed good stability in different concentration tests, and within/among different instruments for both intra-day and inter-day precision examinations. Correlation in tR of ginsenosides was also highly determined on these three platforms. In spite of the different mass analyzers involved, these three platforms gave the accurate mass determination ability, especially enhanced resolution gained because of the ion mobility (IM) separation facilitated by IM-quadrupole time-of-flight. The current study has systematically evaluated the separation and MS detection performance enabled by three high-resolution LC-MS platforms taking ginsenosides as the template, and the reported findings can benefit the researchers for the selection of analytical platforms and the purpose of data sharing or data transfer.


Subject(s)
Ginsenosides , Mass Spectrometry , Panax , Plant Leaves , Ginsenosides/analysis , Ginsenosides/isolation & purification , Ginsenosides/chemistry , Panax/chemistry , Plant Leaves/chemistry , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods
8.
Anal Chem ; 96(24): 9780-9789, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38848497

ABSTRACT

Dental caries is one of the most common diseases affecting more than 2 billion people's health worldwide. In a clinical setting, it is challenging to predict and proactively guard against dental cavities prior to receiving a confirmed diagnosis. Streptococcus mutans (S. mutans) in saliva has been recognized as the main causative bacterial agent that causes dental caries. High sensitivity, good selectivity, and a wide detection range are incredibly important factors to affect S. mutans detection in practical applications. In this study, we present a portable saliva biosensor designed for the early detection of S. mutans with the potential to predict the occurrence of dental cavities. The biosensor was fabricated using a S. mutans-specific DNA aptamer and S. mutans-imprinted polymers. Methylene blue was utilized as a redox probe in the sensor to generate current signals for analysis. When S. mutans enters complementarily S. mutans cavities, it blocks electron transfer between methylene blue and the electrode, resulting in decreases in the reduction current signal. The signal variations are associated with S. mutans concentrations that are useful for quantitative analysis. The linear detection range of S. mutans is 102-109 cfu mL-1, which covers the critical concentration of high caries risk. The biosensor exhibited excellent selectivity toward S. mutans in the presence of other common oral bacteria. The biosensor's wide detection range, excellent selectivity, and low limit of detection (2.6 cfu mL-1) are attributed to the synergistic effect of aptamer and S. mutans-imprinted polymers. The sensor demonstrates the potential to prevent dental caries.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Dental Caries , Saliva , Streptococcus mutans , Saliva/microbiology , Saliva/chemistry , Streptococcus mutans/isolation & purification , Biosensing Techniques/instrumentation , Dental Caries/diagnosis , Dental Caries/microbiology , Aptamers, Nucleotide/chemistry , Humans , Methylene Blue/chemistry , Electrochemical Techniques/instrumentation
9.
Anal Chem ; 96(19): 7669-7678, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38708542

ABSTRACT

Protein tyrosine kinase-7 (PTK7) has been reported as a vital participant in the Wnt signaling pathway, influencing tumorigenesis and metastasis. However, their specific roles in the mechanisms underlying cancer development and progression remain elusive. Here, using direct stochastic optical reconstruction microscopy (dSTORM) with aptamer-probe labeling, we first revealed that a weakening clustering distribution of PTK7 on the basal membranes happened as cellular migration increased during cancer progression. This correspondence was further supported by a diminished aggregated state of PTK7 caused by direct enhancement of cell migration. By comparing the alterations in PTK7 distribution with activation or inhibition of specific Wnt signaling pathway, we speculated that PTK7 could modulate cell migration by participating in the interplay between canonical Wnt (in MCF7 cells) and noncanonical Wnt signals (in MDA-MB-231 cells). Furthermore, we discovered that the spatial distribution morphology of PTK7 was also subject to the hydrolysis ability and activation state of the related hydrolase Matrix metallopeptidase14 (MMP14). This function-related specific assembly of PTK7 reveals a clear relationship between PTK7 and cancer. Meanwhile, potential molecular interactions predicted by the apparent assembly morphology can promote a deep understanding of the functional mechanism of PTK7 in cancer progress.


Subject(s)
Receptor Protein-Tyrosine Kinases , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Cell Movement , Cell Adhesion Molecules/metabolism , Wnt Signaling Pathway , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/pathology , Matrix Metalloproteinase 14/metabolism
10.
Heliyon ; 10(8): e29448, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38655317

ABSTRACT

Background and aim: Solid organ transplantation remains a life-saving therapeutic option for patients with end-stage organ dysfunction. Acute cellular rejection (ACR), dominated by dendritic cells (DCs) and CD4+ T cells, is a major cause of post-transplant mortality. Inhibiting DC maturation and directing the differentiation of CD4+ T cells toward immunosuppression are keys to inhibiting ACR. We propose that oxymatrine (OMT), a quinolizidine alkaloid, either alone or in combination with rapamycin (RAPA), attenuates ACR by inhibiting the mTOR-HIF-1α pathway. Methods: Graft damage was assessed using haematoxylin and eosin staining. Intragraft CD11c+ and CD4+ cell infiltrations were detected using immunohistochemical staining. The proportions of mature DCs, T helper (Th) 1, Th17, and Treg cells in the spleen; donor-specific antibody (DSA) secretion in the serum; mTOR-HIF-1α expression in the grafts; and CD4+ cells and bone marrow-derived DCs (BMDCs) were evaluated using flow cytometry. Results: OMT, either alone or in combination with RAPA, significantly alleviated pathological damage; decreased CD4+ and CD11c+ cell infiltration in cardiac allografts; reduced the proportion of mature DCs, Th1 and Th17 cells; increased the proportion of Tregs in recipient spleens; downregulated DSA production; and inhibited mTOR and HIF-1α expression in the grafts. OMT suppresses mTOR and HIF-1α expression in BMDCs and CD4+ T cells in vitro. Conclusions: Our study suggests that OMT-based therapy can significantly attenuate acute cardiac allograft rejection by inhibiting DC maturation and CD4+ T cell responses. This process may be related to the inhibition of the mTOR-HIF-1α signaling pathway by OMT.

11.
Int Immunopharmacol ; 133: 112092, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38626548

ABSTRACT

BACKGROUND: Endometrial regenerative cells (ERCs) have been proven to be an effective strategy for attenuating experimental colitis, but the complex in vivo microenvironment such as oxidative stress may largely limit and weaken ERC efficacy. Melatonin (MT) works as an anti-oxidative agent in a variety of preclinical diseases, and has been identified to promote mesenchymal stem cell-mediated therapeutic effects in different diseases. However, the ability of MT to enhance ERC-mediated effects in colitis is currently poorly understood. METHODS: Menstrual blood was collected from healthy female volunteers to obtain ERCs and identified. In vitro, H2O2-induced oxidative stress was introduced to test if MT could prevent ERCs from damage through detection of intracellular reactive oxidative species (ROS) and apoptosis assay. In vivo, dextran sodium sulfate (DSS)-induced acute colitis was treated by ERCs and MT-primed ERCs, therapeutic effects were assayed by the disease activity index (DAI), histological features, and macrophage and CD4+ T cell in the spleen and colon, and cytokine profiles in the sera and colon were also measured. RESULTS: In vitro, ERCs that underwent MT-precondition were found to possess more anti-oxidative potency in comparison to naïve ERCs, which were characterized by decreased apoptosis rate and intracellular ROS under H2O2 stimulation. In vivo, MT pretreatment can significantly enhance the therapeutic effects of ERCs in the attenuation of experimental colitis, including decreased DAI index and damage score. In addition, MT pretreatment was found to promote ERC-mediated inhibition of Th1, Th17, and M1 macrophage and pro-inflammatory cytokines, increase of Treg, and immunomodulation of cytokines in the spleen and colon. CONCLUSIONS: MT pretreatment facilitates the promotion of cell viability under oxidative stress in vitro, while also enhancing ERC-mediated therapeutic effects in experimental colitis.


Subject(s)
Colitis , Dextran Sulfate , Endometrium , Melatonin , Oxidative Stress , Melatonin/therapeutic use , Melatonin/pharmacology , Animals , Female , Colitis/chemically induced , Colitis/therapy , Colitis/drug therapy , Humans , Endometrium/pathology , Endometrium/drug effects , Oxidative Stress/drug effects , Mice , Mice, Inbred C57BL , Hydrogen Peroxide/metabolism , Cytokines/metabolism , Disease Models, Animal , Apoptosis/drug effects , Cells, Cultured , Antioxidants/therapeutic use , Antioxidants/pharmacology , Colon/pathology , Colon/drug effects , Reactive Oxygen Species/metabolism , Adult , Regeneration/drug effects , Macrophages/immunology , Macrophages/drug effects
12.
Cytokine ; 179: 156598, 2024 07.
Article in English | MEDLINE | ID: mdl-38583255

ABSTRACT

BACKGROUND: Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS: The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS: Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS: We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.


Subject(s)
Allografts , Graft Rejection , Heart Transplantation , Interleukin-1 , Mice, Inbred BALB C , Mice, Inbred C57BL , Recombinant Proteins , Animals , Graft Rejection/immunology , Graft Rejection/prevention & control , Humans , Mice , Recombinant Proteins/pharmacology , Interleukin-1/metabolism , Graft Survival/drug effects , Graft Survival/immunology , Th1 Cells/immunology , Th1 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Male , TOR Serine-Threonine Kinases/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , Signal Transduction/drug effects
13.
Biomacromolecules ; 25(3): 1972-1977, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38359265

ABSTRACT

A facile and green approach for the preparation of PEGn-NH2s from PEGn-N3s in water with DTT as the reduction reagent has been developed, avoiding the introduction of metal ions and difficulties in purification compared to the traditional synthesis process of PEGn-NH2s. A series of high-purity linear and multiarm PEGn-NH2s with different molecular weights were synthesized, demonstrating the versatility of this method. Additionally, HS-PEG45-NH2 with high fidelity of thiol and amine was easily prepared through the one-step two functional group conversion of N3-PEG45-S-S-PEG45-N3, and the PEG-based NH2-PEG@AuNPs were also prepared. This technology will promote the application of PEGn-NH2s in the fields of medicine and biomaterials.


Subject(s)
Metal Nanoparticles , Polyethylene Glycols , Azides , Dithiothreitol , Amines , Gold
14.
J Agric Food Chem ; 72(2): 1339-1353, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38183657

ABSTRACT

Two offline multidimensional chromatography/high-resolution mass spectrometry systems (method 1: fractionation and online two-dimensional liquid chromatography, 2D-LC; method 2: fractionation and offline 2D-LC) were established to characterize the metabolites simultaneously from three Glycyrrhiza species. Ion exchange chromatography in the first-dimensional (1D) separation was well fractionated between the acidic (mainly triterpenoids) and weakly acidic components (flavonoids). These obtained subsamples got sophisticated separation by the second (2D) and third dimension (3D) of chromatography either by online reversed-phase chromatography × reversed-phase chromatography (RPC × RPC) or offline hydrophilic interaction chromatography × RPC (HILIC × RPC). Orthogonality for the 2D/3D separations reached 0.73 for method 1 and 0.81 for method 2, respectively. We could characterize 1097 compounds from three Glycyrrhiza species based on an in-house library and 33 reference standards, involving 618 by method 1 and 668 by method 2, respectively. They exhibited a differentiated performance and complementarity in identifying the multiple subclasses of Glycyrrhiza components.


Subject(s)
Chromatography, Reverse-Phase , Glycyrrhiza , Mass Spectrometry , Chromatography, Reverse-Phase/methods , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Hydrophobic and Hydrophilic Interactions
15.
Anal Bioanal Chem ; 416(7): 1571-1587, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279012

ABSTRACT

Dragon's Blood (DB) serves as a precious Chinese medicine facilitating blood circulation and stasis dispersion. Daemonorops draco (D. draco; Qi-Lin-Jie) and Dracaena cochinchinensis (D. cochinchinenesis; Long-Xue-Jie) are two reputable plant sources for preparing DB. This work was designed to comprehensively characterize and compare the metabolome differences between D. draco and D. cochinchinenesis, by integrating liquid chromatography/mass spectrometry and untargeted metabolomics analysis. Offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), by utilizing a powerful hybrid scan approach, was elaborated for multicomponent characterization. Configuration of an XBridge Amide column and an HSS T3 column in offline mode exhibited high orthogonality (A0 0.80) in separating the complex components in DB. Particularly, the hybrid high-definition MSE-high definition data-dependent acquisition (HDMSE-HDDDA) in both positive and negative ion modes was applied for data acquisition. Streamlined intelligent data processing facilitated by the UNIFI™ (Waters) bioinformatics platform and searching against an in-house chemical library (recording 223 known compounds) enabled efficient structural elucidation. We could characterize 285 components, including 143 from D. draco and 174 from D. cochinchinensis. Holistic comparison of the metabolomes among 21 batches of DB samples by the untargeted metabolomics workflows unveiled 43 significantly differential components. Separately, four and three components were considered as the marker compounds for identifying D. draco and D. cochinchinenesis, respectively. Conclusively, the chemical composition and metabolomic differences of two DB resources were investigated by a dimension-enhanced analytical approach, with the results being beneficial to quality control and the differentiated clinical application of DB.


Subject(s)
Chemometrics , Metabolome , Plant Extracts , Mass Spectrometry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods
16.
Analyst ; 149(4): 1327-1336, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38259145

ABSTRACT

Biological contamination is an important issue in environmental pH detection, and our prepared electrochemically cleanable electrode may be an effective solution. By electrodepositing an iridium oxide-ruthenium oxide composite on a titanium sheet substrate, the electrode shows a sensitivity of 59.4 mV per pH in the pH range of 2-12 with high reproducibility, low hysteresis, high selectivity and high stability. It is worth mentioning that the electrode was proved to be electrochemically cleanable from biological contamination. When the cleaning time was 30 minutes, the electrode sensitivity rose from 50 to 58 mV per pH. Furthermore, the pH sensor, assembled from the prepared iridium-ruthenium oxide electrode and a home-made Ag/AgCl electrode, has similar electrode properties to those of commercial glass electrodes, but is also mechanically strong and electrochemically cleanable, which is promising for long-term deployment in natural environments.

17.
Phytother Res ; 38(1): 384-399, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992723

ABSTRACT

Acute myocardial infarction (MI) is one of the leading causes of mortality around the world. Prunella vulgaris (Xia-Ku-Cao in Chinese) is used in traditional Chinese medicine practice for the treatment of cardiovascular diseases. However, its active ingredients and mechanisms of action on cardiac remodeling following MI remain unknown. In this study, we investigated the cardioprotective effect of P. vulgaris on MI rat models. MI rats were treated with aqueous extract of P. vulgaris or phenolic acids from P. vulgaris, including caffeic acid, ursolic acid or rosmarinic acid, 1 day after surgery and continued for the following 28 days. Then the cardioprotective effect, such as cardiac function, inflammatory status, and fibrosis areas were evaluated. RNA-sequencing (RNA-seq) analysis, real-time polymerase chain reaction (PCR), western blotting, and ELISA were used to explore the underlying mechanism. In addition, ultra-high performance liquid chromatography/mass spectrometer analysis was used to identify the chemicals from P. vulgaris. THP-1NLRP3-GFP cells were used to confirm the inhibitory effect of P. vulgaris and phenolic acids on the expression and activity of NLRP3. We found that P. vulgaris significantly improved cardiac function and reduced infarct size. Meanwhile, P. vulgaris protected cardiomyocyte against apoptosis, evidenced by increasing the expression of anti-apoptosis protein Bcl-2 in the heart and decreasing lactate dehydrogenase (LDH) levels in serum. Results from RNA-seq revealed that the therapeutic effect of P. vulgaris might relate to NLRP3-mediated inflammatory response. Results from real-time PCR and western blotting confirmed that P. vulgaris suppressed NLRP3 expression in MI heart. We also found that P. vulgaris suppressed NLRP3 expression and the secretion of HMGB1, IL-1ß, and IL-18 in THP-1NLRP3-GFP cells. Further studies indicated that the active components of P. vulgaris were three phenolic acids, those were caffeic acid, ursolic acid, and rosmarinic acid. These phenolic acids inhibited LPS-induced NLRP3 expression and activity in THP-1 cells, and improved cardiac function, suppressed inflammatory aggregation and fibrosis in MI rat models. In conclusion, our study demonstrated that P. vulgaris and phenolic acids from P. vulgaris, including caffeic acid, ursolic acid, and rosmarinic acid, could improve cardiac function and protect cardiomyocytes from ischemia injury during MI. The mechanism was partially related to inhibiting NLRP3 activation.


Subject(s)
Myocardial Infarction , Prunella , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Prunella/metabolism , Ventricular Remodeling , Myocardial Infarction/drug therapy , Myocytes, Cardiac , Fibrosis , Caffeic Acids/pharmacology
18.
Food Chem ; 439: 138106, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38056336

ABSTRACT

Accurate characterization of Panax herb ginsenosides is challenging because of the isomers and lack of sufficient reference compounds. More structural information could help differentiate ginsenosides and their isomers, enabling more accurate identification. Based on the VionTM ion-mobility high-resolution LC-MS platform, a multidimensional information library for ginsenosides, namely GinMIL, was established by predicting retention time (tR) and collision cross section (CCS) through machine learning. Robustness validation experiments proved tR and CCS were suitable for database construction. Among three machine learning models we attempted, gradient boosting machine (GBM) exhibited the best prediction performance. GinMIL included the multidimensional information (m/z, molecular formula, tR, CCS, and some MS/MS fragments) for 579 known ginsenosides. Accuracy in identifying ginsenosides from diverse ginseng products was greatly improved by a unique LC-MS approach and searching GinMIL, demonstrating a universal Panax saponins library constructed based on hierarchical design. GinMIL could improve the accuracy of isomers identification by approximately 88%.


Subject(s)
Ginsenosides , Panax , Saponins , Ginsenosides/analysis , Tandem Mass Spectrometry/methods , Panax/chemistry , Chromatography, High Pressure Liquid/methods
19.
Cytotherapy ; 26(3): 299-310, 2024 03.
Article in English | MEDLINE | ID: mdl-38159090

ABSTRACT

BACKGROUND AIMS: Chronic allograft vasculopathy (CAV) remains a predominant contributor to late allograft failure after organ transplantation. Several factors have already been shown to facilitate the progression of CAV, and there is still an urgent need for effective and specific therapeutic approaches to inhibit CAV. Human mesenchymal-like endometrial regenerative cells (ERCs) are free from the deficiencies of traditional invasive acquisition methods and possess many advantages. Nevertheless, the exact immunomodulation mechanism of ERCs remains to be elucidated. METHODS: C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor abdominal aorta transplantation were treated with ERCs, negative control (NC)-ERCs and interleukin (IL)-37-/-ERCs (ERCs with IL-37 ablation), respectively. Pathologic lesions and inflammatory cell infiltration in the grafts, splenic immune cell populations, circulating donor-specific antibody levels and cytokine profiles were analyzed on postoperative day (POD) 40. The proliferative capacities of Th1, Th17 and Treg subpopulations were assessed in vitro. RESULTS: Allografts from untreated recipients developed typical pathology features of CAV, namely endothelial thickening, on POD 40. Compared with untreated and IL-37-/-ERC-treated groups, IL-37-secreting ERCs (ERCs and NC-ERCs) significantly reduced vascular stenosis, the intimal hyperplasia and collagen deposition. IL-37-secreting ERCs significantly inhibited the proliferation of CD4+T cells, reduced the proportions of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. Furthermore, in vitro results also showed that IL-37-secreting ERCs significantly inhibited Th1 and Th17 cell responses, abolished B-cell activation, diminished donor-specific antibody production and increased Treg proportions. Notably, IL-37-secreting ERCs remarkably downregulated the levels of pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, IL-1ß, IL-6 and IL-17A) and increased IL-10 levels in transplant recipients. CONCLUSIONS: The knockdown of IL-37 dramatically abrogates the therapeutic ability of ERCs for CAV. Thus, this study highlights that IL-37 is indispensable for ERC-mediated immunomodulation for CAV and improves the long-term allograft acceptance.


Subject(s)
Heart Transplantation , Animals , Humans , Mice , Allografts , Immunotherapy , Interleukins , Mice, Inbred BALB C , Mice, Inbred C57BL
20.
J Agric Food Chem ; 71(50): 20372-20385, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38055271

ABSTRACT

Characterization and spatial distribution studies of the metabolome in plants are crucial for revealing the physiology of plants and developing functional foods. Using the rhizome of Glycyrrhiza uralensis as a case, we integrated desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) and high-resolution liquid chromatography/mass spectrometry approaches aimed at characterizing and locating both the small molecules and the macromolecular polysaccharides. Under the optimal conditions, 21 flavonoids and 12 triterpenoids were detected and characterized in different tissues of the rhizome and another 19 components were characterized exclusively by DESI-MSI. Combined with hydrophilic interaction chromatography/ion mobility-quadrupole time-of-flight mass spectrometry, eight different degrees of polymerization of oligosaccharides (after in situ acid hydrolysis) were characterized from the rhizome of G. uralensis. Majority of these metabolites are located in the cortex, phloem, and medulla, which lays the foundation for understanding the physiology of G. uralensis. The useful information can benefit the sustainable utilization and further development of Glycyrrhiza resource.


Subject(s)
Glycyrrhiza uralensis , Glycyrrhiza uralensis/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Rhizome , Liquid Chromatography-Mass Spectrometry , Oligosaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL