Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Total Environ ; 948: 175000, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39053539

ABSTRACT

It is well known that microplastics can act as vectors of pollutants in the environment and are widely spread in freshwater and marine environments. PFAS (perfluoroalkyl and polyfluoroalkyl substances) can remain in the aqueous environment for long periods due to their wide application and good stability. The coexistence of microplastics and PFAS in the aqueous environment creates conditions for their interaction and combined toxicity. Studies on adsorption experiments between them and combined toxicity have been documented in the literature but have not been critically summarized and reviewed. Therefore, in this review, we focused on the interaction mechanisms, influencing factors, and combined toxicity between microplastics and PFAS. It was found that surface complexation may be a new interaction mechanism between microplastics and PFAS. In addition, aged microplastics reduce the adsorption of PFAS due to the presence of oxygenated groups on the surface compared to virgin microplastics. Attached biofilms can increase the adsorption capacity and create conditions for biodegradation. And, the interaction of microplastics and PFAS affects their spatial and temporal distribution in the environment. This review can provide insights into the fate of microplastics and PFAS in the global aquatic environment, fill knowledge gaps on the interactions between microplastics and PFAS, and provide a basic reference for assessing their combined toxicity.


Subject(s)
Fluorocarbons , Microplastics , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Fluorocarbons/toxicity , Environmental Monitoring , Adsorption
2.
Neurotoxicology ; 104: 66-74, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39084264

ABSTRACT

1-octyl-3-methylimidazolium bromide ([C8mim]Br), one of the ionic liquids (ILs), has been used in various fields as an alternative green solvent of conventional organic solvents. Increased application and stabilization of imidazole ring structure lead to its release into the aquatic environment and long-term retention. Structure-activity relationship consideration suggested that ILs may be acetylcholinesterase inhibitors; however, neurotoxicity in vivo, especially the underlying mechanisms is rarely studied. In this study, the zebrafish were exposed to 2.5-10 mg/L [C8mim]Br for 28 days to comprehensively evaluate the neurotoxicity of ILs on adult zebrafish from the behavioral profiles and neurotransmitter systems for the first time. The results indicate that zebrafish exhibit suppressed spatial working memory and anxious behaviors. To assess the potential neurotoxic mechanisms underlying the behavioral responses of zebrafish, we measured the levels of neurotransmitters and precursors, key enzyme activities, and expression levels of relevant genes. Nissl staining showed significant neural cell death in zebrafish after 28-day [C8mim]Br exposure, with corresponding decreases in the levels of neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptophan, gamma-aminobutyric acid, dopamine, and norepinephrine). Furthermore, these results were associated with mRNA expression levels of the disrupted neurotransmitter key genes (th, tph2, mao, slc6a3, ache, gad67). Overall, our study determined that [C8mim]Br caused potential mental disorders like anxiety and memory deterioration in zebrafish by impairing neurotransmitter systems, providing recommendations for the industrial production and application of [C8mim]Br.

3.
Sci Total Environ ; 927: 172113, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38580110

ABSTRACT

Antimony (Sb) and sulfate are two common pollutants in Sb mine drainage and Sb-containing textile wastewater. In this paper, it was found that iron­carbon (Fe/C) enhanced Sb(V) removal from sulfate-rich wastewater by anaerobic granular sludge (AnGS). Sulfate inhibited Sb(V) removal (S + Sb, k = 0.101), while Fe/C alleviated the inhibition and increased Sb(V) removal rate by 2.3 times (Fe/C + S + Sb, k = 0.236). Fe/C could promote the removal of Sb(III), and Sb(III) content decreased significantly after 8 h. Meanwhile, Fe/C enhanced the removal of sulfate. The 3D-EEM spectrum of supernatant in Fe/C + S + Sb group (at 24 h) showed that Fe/C stimulated the production of soluble microbial products (SMP) in wastewater. SMP alleviated the inhibition of sulfate, promoting AnGS to reduce Sb(V). Sb(V) could be reduced to Sb(III) both by AnGS and sulfides produced from sulfate reduction. Further analysis of extracellular polymeric substances (EPS) and AnGS showed that Fe/C increased the adsorbed Sb(V) in EPS and the c-type cytochrome content in AnGS, which may be beneficial for Sb(V) removal. Sb(V) reduction in Fe/C + S + Sb group may be related to the genus Acinetobacter, while in Sb group, several bacteria may be involved in Sb(V) reduction, such as Acinetobacter, Pseudomonas and Corynebacterium. This study provided insights into Fe/C-enhanced Sb(V) removal from sulfate-rich wastewater.


Subject(s)
Antimony , Iron , Sewage , Sulfates , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Antimony/analysis , Anaerobiosis , Carbon
4.
Environ Toxicol Pharmacol ; 92: 103864, 2022 May.
Article in English | MEDLINE | ID: mdl-35430362

ABSTRACT

The increasing production and usage of ionic liquids (ILs) have raised global ecotoxicological concerns regarding their release into the environment. While the effects of side chains on the IL-induced toxicity in various aquatic organisms have been well-recognized, the role of cationic cores in determining their ecotoxicity remains to be elucidated. Herein, the comparative bioavailability and toxicity of two ILs with different cationic cores but the same anion and side chain in zebrafish embryos were determined. 1-octyl-3-methylimidazolium bromide ([C8mim]Br) has higher accumulation in zebrafish, and triggered developmental toxicity by inducing oxidative stress and apoptosis. Meanwhile, 1-octyl-1-methylpyridium bromide ([C8py]Br) enhanced SOD activity and upregulated anti-apoptotic bcl-2 gene expression, contributing to its much lower neurodevelopmental toxicity. Our study demonstrates the vital role of cationic core in determining the developmental toxicity of ILs and highlights the need for further investigations into the toxicity of imidazolium and pyridinium based ILs in aquatic ecosystems.


Subject(s)
Ionic Liquids , Zebrafish , Animals , Apoptosis , Bromides/pharmacology , Cations , Ecosystem , Oxidative Stress
5.
Anal Chem ; 91(3): 1785-1790, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30588801

ABSTRACT

The contamination of micro- and nanoplastics in marine systems and freshwater is a global issue. Determination of micro- and nanoplastics in the aqueous environment is of high priority to fully assess the risk that plastic particles will pose. Although microplastics have been detected in a variety of aquatic ecosystems, the analysis of nanoplastics remains an unsolved challenge. Herein, for the first time, a Triton X-45 (TX-45)-based cloud-point extraction (CPE) was proposed to preconcentrate trace nanoplastics in environmental waters. Under the optimum extraction conditions, an enrichment factor of 500 was obtained for two types of nanoplastics with different compositions, polystyrene (PS) and poly(methyl methacrylate) (PMMA), without disturbing their original morphology and sizes. Additionally, following thermal treatment at 190 °C for 3 h, the CPE-obtained extract could be submitted to pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) analysis for mass quantification of nanoplastics. Taking 66.2 nm PS nanoplastics and 86.2 nm PMMA nanoplastics as examples, the proposed method showed excellent reproducibility, and high sensitivity with respective detection limits of 11.5 and 2.5 fM. Feasibility of the proposed approach was verified by application of the optimized procedure to four real water samples. Recoveries of 84.6-96.6% at a spiked level of 88.6 fM for PS nanoplastics and 76.5-96.6% at a spiked level of 50.4 fM for PMMA nanoplastics were obtained. Consequently, this work provides an efficient approach for nanoplastic analysis in environmental waters.


Subject(s)
Liquid-Liquid Extraction/methods , Nanoparticles/analysis , Polymethyl Methacrylate/analysis , Polystyrenes/analysis , Pyrolysis , Disaccharides , Glucuronates , Limit of Detection , Nanoparticles/chemistry , Octoxynol/chemistry , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Reproducibility of Results , Rivers/chemistry , Seawater/analysis , Surface-Active Agents/chemistry , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL