Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.425
Filter
1.
Article in English | MEDLINE | ID: mdl-38822731

ABSTRACT

INTRODUCTION: Agitation, psychosis, and apathy are prevalent and highly distressing neuropsychiatric symptoms (NPS) of Alzheimer's disease (AD) that have been linked to numerous negative outcomes, including increased mortality, worsened cognitive decline, and caregiver burden. Current treatments for AD-associated agitation, namely atypical antipsychotics, provide some benefits but may increase the risk of serious adverse events and death. Meanwhile, no pharmacotherapies have been approved by regulatory agencies for the treatment of psychosis or apathy in AD. Over the past decade, many new and repurposed drugs have emerged as potential therapeutic options for managing these challenging NPS. AREAS COVERED: This review aims to provide a comprehensive summary of pharmacotherapies that have recently been investigated in phase 2 and 3 clinical trials for the treatment of agitation, psychosis, or apathy in AD. EXPERT OPINION: Novel atypical antipsychotics, serotonergic antidepressants, cannabinoids, and dextromethorphan combination drugs have shown promising results for alleviating agitation. Pimavanserin appears to be the most effective emerging therapy for psychosis while methylphenidate has demonstrated good efficacy for apathy. Further research on biomarkers of NPS severity and treatment response, as well as continued improvements in methodological approaches are needed to advance the field.

2.
Bull Environ Contam Toxicol ; 112(6): 83, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822863

ABSTRACT

To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.


Subject(s)
Cadmium , Microplastics , Seedlings , Superoxide Dismutase , Vicia faba , Vicia faba/drug effects , Vicia faba/growth & development , Seedlings/drug effects , Seedlings/growth & development , Cadmium/toxicity , Microplastics/toxicity , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Water Pollutants, Chemical/toxicity , Plant Roots/drug effects , Plant Roots/growth & development
3.
Plant Physiol Biochem ; 212: 108784, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38823093

ABSTRACT

TGA-binding (TGA) transcription factors, characterized by the basic region/leucine zipper motif (bZIP), have been recognized as pivotal regulators in plant growth, development, and stress responses through their binding to the as-1 element. In this study, the TGA gene families in melon, watermelon, cucumber, pumpkin, and zucchini were comprehensively characterized, encompassing analyses of gene/protein structures, phylogenetic relationships, gene duplication events, and cis-acting elements in gene promoters. Upon transient expression in Nicotiana benthamiana, the melon CmTGAs, with typical bZIP and DOG1 domains, were observed to localize within the nucleus. Biochemical investigation revealed specific interactions between CmTGA2/3/5/8/9 and CmNPR3 or CmNPR4. The CmTGA genes exhibited differential expression patterns in melon plants in response to different hormones like salicylic acid, methyl jasmonate, and ethylene, as well as a fungal pathogen, Stagonosporopsis cucurbitacearum that causes gummy stem blight in melon. The overexpression of CmTGA3, CmTGA8, and CmTGA9 in Arabidopsis plants resulted in the upregulation of AtPR1 and AtPR5 expression, thereby imparting enhanced resistance to Pseudomonas syringae pv. Tomato DC3000. In contrast, the overexpression of CmTGA7 or CmTGA9 resulted in a compromised resistance to Botrytis cinerea, coinciding with a concomitant reduction in the expression levels of AtPDF1.2 and AtMYC2 following infection with B. cinerea. These findings shed light on the important roles of specific CmTGA genes in plant immunity, suggesting that genetic manipulation of these genes could be a promising avenue for enhancing plant immune responses.

4.
Food Res Int ; 188: 114453, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823833

ABSTRACT

In this study, whipped cream with blends of micellar casein (MCN) and whey protein (WPI) in different ratios were prepared to investigate the role of protein interfacial behavior in determining foam properties at multiple scales, using theoretical modeling, and microscopic and macroscopic analysis. Fluid force microscopy has been used for the first time as a more realistic and direct means of analyzing interfaces properties in multiphase systems. The adsorption kinetics showed that the interfacial permeability constant of WPI (4.24 × 10-4 s-1) was significantly higher than that of the MCN (2.97 × 10-4 s-1), and the WPI interfacial layer had a higher modulus of elasticity (71.38 mN/m) than that of the MCN (47.89 mN/m). This model was validated via the mechanical analysis of the fat globules in real emulsions. The WPI-stabilized fat globule was found to have a higher Young's modulus (219.67 Pa), which contributes to the integrity of its fat globule morphology. As the ratio of MCN was increased in the sample, however, both the interfacial modulus and Young's modulus decreased. Moreover, the rate of partial coalescence was found to increase, a phenomenon that decreased the stability of the emulsion and increased the rate of aeration. The mechanical analysis also revealed a higher level of adhesion between MCN-stabilized fat globule (25.16 nN), which increased fat globule aggregation and emulsion viscosity, while improving thixotropic recovery. The synergistic effect of the blended MCN and WPI provided the highest overrun, at 194.53 %. These studies elucidate the role of the interfacial behavior of proteins in determining the quality of whipped cream and provide ideas for the application of proteins in multiphase systems.


Subject(s)
Caseins , Micelles , Whey Proteins , Whey Proteins/chemistry , Caseins/chemistry , Emulsions/chemistry , Dairy Products , Lipid Droplets/chemistry , Adsorption , Kinetics , Permeability , Food Handling/methods , Glycolipids/chemistry , Elastic Modulus , Viscosity , Glycoproteins
5.
Opt Lett ; 49(11): 3126-3129, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824344

ABSTRACT

Graphene is a kind of two-dimensional material with a single-layer carbon structure and has been investigated in many high-performance photodetectors. The lateral photovoltaic effect (LPE) is widely used in the position-sensitive detectors (PSDs) owing to its linear response of photovoltage to the light position. In this Letter, a type of graphene-enhanced LPE is observed in the Ag nanoparticle-covered graphene/n-type Si. The LPE sensitivity can reach 97.3 mV/mm, much higher than the sensitivity of 1.3 mV/mm in the control sample of Ag/Si and 5.2 mV/mm of graphene/Si. Based on the photocarriers' diffusion mechanism, tailoring a photocarrier transfer at the interface of a heterojunction plays a key role for the enhancement. These findings exhibit great application potential of graphene in the field of PSDs and offer an effective method for the optimization of LPE devices.

6.
J Craniofac Surg ; 35(4): 1080-1083, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829144

ABSTRACT

BACKGROUND: Titanium mesh cranioplasty is the most common strategy for the repair of skull defects. However, as the frequency of cranioplasty increases, the incidence of titanium mesh exposure following cranioplasty increases as well. This study aimed to investigate the methods and outcomes of plastic surgery in the management of titanium mesh exposure following cranioplasty. METHODS: Patients with titanium mesh exposure following cranioplasty were retrospectively selected from January 2016 to August 2021. Titanium mesh exposure was corrected with reconstructive plastic surgery, including skin grafting, expander insertion, partial removal of the exposed mesh, replacement of the mesh, or flap transplantation. RESULTS: This study included 21 patients with titanium mesh exposure with surgical site infection and a variant of scalp deformity. The age of the patients ranged from 18 to 74 years, with the mean age being 54 years. All patients underwent reconstructive plastic surgery and exhibited complete wound healing. The follow-up period ranged from 17 to 90 months. One patient experienced titanium mesh re-exposure and subsequently underwent an additional procedure for the partial removal of the exposed mesh. No serious complications were observed postoperatively. CONCLUSION: Reconstructive plastic surgery can facilitate wound healing at the titanium mesh exposure site following cranioplasty. However, an individualized treatment strategy is required for each patient, and complications should be managed by adopting standard measures.


Subject(s)
Plastic Surgery Procedures , Skull , Surgical Mesh , Surgical Wound Infection , Titanium , Humans , Middle Aged , Male , Adult , Female , Plastic Surgery Procedures/methods , Retrospective Studies , Aged , Adolescent , Skull/surgery , Surgical Wound Infection/etiology , Surgical Wound Infection/surgery , Surgical Flaps , Young Adult , Wound Healing , Postoperative Complications/surgery , Skin Transplantation
7.
J Agric Food Chem ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833376

ABSTRACT

This study found that, after microwave treatment at 560 W for 30 s, alkaline protease enzymolysis significantly reduced the allergenicity of ovalbumin (OVA). Furthermore, specific adsorption of allergenic anti-enzyme hydrolyzed peptides in the enzymatic products by immunoglobulin G (IgG) bound to magnetic bead further decreased the allergenicity of OVA. The results indicated that microwave treatment disrupts the structure of OVA, increasing the accessibility of OVA to the alkaline protease. A comparison between 17 IgG-binding epitopes identified through high-performance liquid chromatography-higher energy collisional dissociation-tandem mass spectrometry and previously reported immunoglobulin E (IgE)-binding epitopes revealed a complete overlap in binding epitopes at amino acids (AA)125-135, AA151-158, AA357-366, and AA373-381. Additionally, partial overlap was observed at positions AA41-59, AA243-252, and AA320-340. Consequently, these binding epitopes were likely pivotal in eliciting the allergic reaction to OVA, warranting specific attention in future studies. In conclusion, microwave-assisted enzymolysis synergized with magnetic bead adsorption provides an effective method to reduce the allergenicity of OVA.

8.
Anal Chim Acta ; 1312: 342747, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834275

ABSTRACT

BACKGROUND: Lipid droplets (LDs) polarity is intricately linked to diverse biological processes and diseases. The visualization of LDs-polarity is of vital importance but challenging due to the lack of high-specificity, high-sensitivity and large-Stokes shift probes for real-time tracking LDs-polarity in biological systems. RESULTS: Four D-π-A based fluorescent probes (TPA-TCF1-TPA-TCF4) have been developed by combining tricyanofuran (an electron acceptor, A) and triphenylamine (an electron donor, D) derivatives with different terminal groups. Among them, TPA-TCF1 and TPA-TCF4 exhibit excellent polar sensitivity, large Stokes shift (≥182 nm in H2O), and efficient LDs targeting ability. In particular, TPA-TCF4 is capable of monitoring the change of LDs-polarity during ferroptosis, inflammation, apoptosis of cancer cell, and fatty liver. SIGNIFICANCE: All these features render TPA-TCF4 a versatile tool for pharmacodynamic evaluation of anti-cancer drugs, in-depth understanding of the biological effect of LDs on ferroptosis, and medical diagnosis of LDs-polarity related diseases.


Subject(s)
Fatty Liver , Ferroptosis , Fluorescent Dyes , Inflammation , Lipid Droplets , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Humans , Ferroptosis/drug effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fluorescent Dyes/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Structure
9.
Adv Ther ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833141

ABSTRACT

INTRODUCTION: Sagittal sequences of the spine have been shown to correlate with knee osteoarthritis (KOA), but coronal sequences and KOA have never been studied before. The study required patients to use a standard standing posture and aimed to explore the relationship between coronal position of lumbar spine and WOMAC score in KOA. METHODS: This is a cross-sectional observational study. Data on a total of 268 patients with KOA were collected. Patients were photographed in a standard standing position and lumbar-sacrum offset distance (L-SOD) and lumbar-knee offset distance (ΔL-KOD) were calculated. Patients were then divided into different groups according to different critical values and differences were compared. RESULTS: In the L-SOD of L1-3, WOMAC function (P = 0.021, P = 0.032, P = 0.001) and total score (P = 0.039, P = 0.034, P < 0.001) were different. In the L-SOD of L3-4, WOMAC pain score were different (P = 0.001, P = 0.032). At a cutoff of 13 mm, ΔL-KOD of L1-2 showed significant differences in pain part (P = 0.025, P = 0.039) and total score (P = 0.036, P = 0.050). There were significant differences in pain (P = 0.023, P = 0.027, P = 0.022), function (P = 0.048, P = 0.038, P = 0.047), and total score (P = 0.030, P = 0.027, P = 0.029) of L3-5. In the 18-mm cutoff group, only L1 and L2 have differences in the pain part (P = 0.050, P = 0.038). CONCLUSION: Coronal balance of the lumbar spine is associated with knee pain and function. The pelvis plays an important role in maintaining the coronal balance. Both the lumbar spine and the knee joint should be considered when developing the surgical strategy.


As a result of population aging, the number of patients suffering from both knee osteoarthritis (KOA) and degenerative diseases of the lumbar spine is increasing. It has been reported that patients with KOA have less symptomatic recovery after lumbar surgery, and that patients with lumbar degenerative disease have less symptomatic improvement after knee surgery than those without lumbar disease. So the knee and lumbar must be interacting in some way. Previous studies have confirmed the correlation between lumbar sagittal position sequence and KOA. However, no studies have been conducted on coronal sequences and KOA of the lumbar spine. We believe that it is because patients are required to stand naturally when taking coronal x-rays, and natural standing will lead to individual differences in the distance between the feet of patients, thereby preventing analysis. In our study, for the first time, we used a uniform stance to avoid this effect. The advantage of uniform stance is that individual differences can be excluded, and the same patient can be compared before and after treatment (because the natural stance of the patient's feet will be different before and after treatment), which is greatly conducive to the study. Our research found that the offset of the lumbar spine in the coronal position and the distance between the central vertical line of the lumbar spine and the bilateral knee joint are significantly correlated with knee pain and function. This may have some guiding significance for lumbar and knee surgery. For lumbar surgery (such as degenerative scoliosis), previous studies have suggested that short segment fixation is sufficient for patients with small Cobb angle. However, according to our conclusion, this may cause accelerated knee joint degeneration in the patient's later stages, which requires the surgeon to comprehensively evaluate the condition of the patient's knee and lumbar spine, and then formulate surgical strategies. The same is true for knee surgery: previous studies have shown no significant correlation between knee deformity and pain. Therefore, for patients with knee deformity and accompanying pain, knee surgery may not be the best choice, and it is more important to correct the deviation of the spine.

10.
Biol Imaging ; 4: e7, 2024.
Article in English | MEDLINE | ID: mdl-38828212

ABSTRACT

Cryogenic electron tomography (cryoET) is capable of determining in situ biological structures of molecular complexes at near-atomic resolution by averaging half a million subtomograms. While abundant complexes/particles are often clustered in arrays, precisely locating and seamlessly averaging such particles across many tomograms present major challenges. Here, we developed TomoNet, a software package with a modern graphical user interface to carry out the entire pipeline of cryoET and subtomogram averaging to achieve high resolution. TomoNet features built-in automatic particle picking and three-dimensional (3D) classification functions and integrates commonly used packages to streamline high-resolution subtomogram averaging for structures in 1D, 2D, or 3D arrays. Automatic particle picking is accomplished in two complementary ways: one based on template matching and the other using deep learning. TomoNet's hierarchical file organization and visual display facilitate efficient data management as required for large cryoET datasets. Applications of TomoNet to three types of datasets demonstrate its capability of efficient and accurate particle picking on flexible and imperfect lattices to obtain high-resolution 3D biological structures: virus-like particles, bacterial surface layers within cellular lamellae, and membranes decorated with nuclear egress protein complexes. These results demonstrate TomoNet's potential for broad applications to various cryoET projects targeting high-resolution in situ structures.

11.
Biochem Biophys Res Commun ; 723: 150173, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38830299

ABSTRACT

The utilization of photothermal agents (PTAs) in photothermal therapy (PTT) is faced with challenges such as immune clearance and inadequate concentration, which consequently result in residual tumors and an increased risk of recurrence and metastasis. Conversely, excessive treatment can lead to heightened inflammation and inevitable harm to adjacent healthy tissues. To address these issues, we developed a nanosystem (M@PB) consisting of Prussian blue coated with tumor cell membrane for precise photothermal therapy (PTT) and subsequent reduction of inflammation. This system not only evades immune attack due to the homologous biological characteristics of the encapsulating cell membrane but also exhibits active targeting capabilities towards homologous tumors. Furthermore, it effectively reduces excessive phototoxicity by leveraging the distinctive photothermal and anti-inflammatory characteristics of PB nanoparticles. The resulting M@PB nanosystem demonstrates effective photothermal ablation under 808 nm laser irradiation while mitigating the inflammatory response through inhibiting of local production of inflammatory mediators. Our study provides valuable insights into achieving targeted PTT with high efficiency while minimizing post-treatment inflammatory responses.

12.
Environ Res ; : 119312, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830393

ABSTRACT

Carbon dioxide (CO2) emissions and haze pollution are often thought to have the same origin, the burning of fossil fuels. However, their relationship is not always synergistic and may even exhibit mutual constraints. Carbon-biased technological progress has emerged as a promising approach for simultaneously achieving three goals - to reduce CO2 emissions, alleviate the haze pressure, and keep economic growth. This study empirically investigates the impact and mechanisms of carbon-biased technological progress on carbon haze collaborative governance using data from 286 Chinese cities during 2006-2021. The results indicate that: (1) Carbon biased technological progress positively influences carbon haze collaborative governance. (2) This progress achieves coordination by enhancing element allocation efficiency, carbon efficiency, and responding to public environmental demands. (3) The facilitating role of carbon biased technological progress to carbon haze collaborative governance will work better if external conditions are met. Moreover, the effectiveness of carbon-biased technological progress in promoting coordination is contingent upon high levels of marketization, government intervention, environmental regulation, and technical advancements. Local and regional governments should foster conducive conditions for carbon dioxide and haze pollution coordination, optimize the allocation and flow of carbon resources, ensure harmonization between environmental regulation policies and other sectors, and bolster international cooperation and technical knowledge exchange to collectively address global environmental challenges.

13.
World J Clin Oncol ; 15(5): 603-613, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38835843

ABSTRACT

Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the type I receptor tyrosine kinase family. ROR1 is pivotal in embryonic development and cancer, and serves as a biomarker and therapeutic target. It has soluble and membrane-bound subtypes, with the latter highly expressed in tumors. ROR1 is conserved throughout evolution and may play a role in the development of gastrointestinal cancer through multiple signaling pathways and molecular mechanisms. Studies suggest that overexpression of ROR1 may increase tumor invasiveness and metastasis. Additionally, ROR1 may regulate the cell cycle, stem cell characteristics, and interact with other signaling pathways to affect cancer progression. This review explores the structure, expression and role of ROR1 in the development of gastrointestinal cancers. It discusses current antitumor strategies, outlining challenges and prospects for treatment.

14.
J Mater Chem B ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836422

ABSTRACT

Physical eutectogels as a newly emerging type of conductive gel have gained extensive interest for the next generation multifunctional electronic devices. Nevertheless, some obstacles, including weak mechanical performance, low self-adhesive strength, lack of self-healing capacity, and low conductivity, hinder their practical use in wearable strain sensors. Herein, lignin as a green filler and a multifunctional hydrogen bond donor was directly dissolved in a deep eutectic solvent (DES) composed of acrylic acid (AA) and choline chloride, and lignin-reinforced physical eutectogels (DESL) were obtained by the polymerization of AA. Due to the unique features of lignin and DES, the prepared DESL eutectogels exhibit good transparency, UV shielding capacity, excellent mechanical performance, outstanding self-adhesiveness, superior self-healing properties, and high conductivity. Based on the aforementioned integrated functions, a wearable strain sensor displaying a wide working range (0-1500%), high sensitivity (GF = 18.15), rapid responsiveness, and excellent stability and durability (1000 cycles) and capable of detecting diverse human motions was fabricated. Additionally, by combining DESL sensors with a deep learning technique, a gesture recognition system with accuracy as high as 98.8% was achieved. Overall, this work provides an innovative idea for constructing multifunction-integrated physical eutectogels for application in wearable electronics.

15.
Int J Cancer ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738976

ABSTRACT

The primary objective of this study is to develop a prediction model for peritoneal metastasis (PM) in colorectal cancer by integrating the genomic features of primary colorectal cancer, along with clinicopathological features. Concurrently, we aim to identify potential target implicated in the peritoneal dissemination of colorectal cancer through bioinformatics exploration and experimental validation. By analyzing the genomic landscape of primary colorectal cancer and clinicopathological features from 363 metastatic colorectal cancer patients, we identified 22 differently distributed variables, which were used for subsequent LASSO regression to construct a PM prediction model. The integrated model established by LASSO regression, which incorporated two clinicopathological variables and seven genomic variables, precisely discriminated PM cases (AUC 0.899; 95% CI 0.860-0.937) with good calibration (Hosmer-Lemeshow test p = .147). Model validation yielded AUCs of 0.898 (95% CI 0.896-0.899) and 0.704 (95% CI 0.622-0.787) internally and externally, respectively. Additionally, the peritoneal metastasis-related genomic signature (PGS), which was composed of the seven genes in the integrated model, has prognostic stratification capability for colorectal cancer. The divergent genomic landscape drives the driver genes of PM. Bioinformatic analysis concerning these driver genes indicated SERINC1 may be associated with PM. Subsequent experiments indicate that knocking down of SERINC1 functionally suppresses peritoneal dissemination, emphasizing its importance in CRCPM. In summary, the genomic landscape of primary cancer in colorectal cancer defines peritoneal metastatic pattern and reveals the potential target of SERINC1 for PM in colorectal cancer.

16.
J Mater Chem B ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741568

ABSTRACT

Cell-penetrating peptides (CPPs) have gained prominence in cellular drug delivery due to their extremely low toxicity and rapid cell internalization properties. Understanding the effect of CPPs' physicochemical properties on trans-membrane behavior will provide a better screening scheme for designing effective CPP-conjugated nano-drugs. Herein, the efficiency of the CPPs interacting with the cell membrane and the subsequent trans-membrane is revealed at the single-molecule level using single-molecule force spectroscopy (SMFS) and force tracing technique based on atomic force spectroscopy (AFM). The dynamic force spectroscopy (DFS) analysis indicates that cationic TAT48-60 and amphipathic MAP are more effective during the interaction with cell membrane due to the strong electrostatic interaction between CPPs and cell membrane. However, for the subsequent trans-membrane process, the hydrophobicity of Pep-7 plays a key role, showing a higher trans-membrane speed at the single-molecule level. Meanwhile, Pep-7 shows lower trans-membrane speed and probability on normal cells (Vero), which makes it more suitable as a peptide-based nano-drug to treat tumors avoiding harming normal cells. The dynamic parameters obtained in this study offer guidance for screening and modifying effective CPPs, targeting specific cell lines or tissues during the nano-drug design.

17.
Adv Sci (Weinh) ; : e2306217, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742466

ABSTRACT

Radiation proctopathy (RP) is a common complication of radiotherapy for pelvic malignancies with high incidence. RP accompanies by microbial dysbiosis. However, how the gut microbiota affects the disease remains unclear. Here, metabolomics reveals that the fecal and serous concentrations of microbiota-derived 3-hydroxybutyrate (3HB) are significantly reduced in RP mice and radiotherapeutic patients. Moreover, the concentration of 3HB is negatively associated with the expression of proinflammatory IL6 that is increased along with the severity of radiation damage. 3HB treatment significantly downregulates IL6 expression and alleviates IL6-mediated radiation damage. Irradiated cell-fecal microbiota co-culture experiments and in vivo assays show that such a radioprotection of 3HB is mediated by GPR43. Microbiome analysis reveals that radiation leads to a distinct bacterial community compared to untreated controls, in which Akkermansia muciniphila is significantly reduced in RP mice and radiotherapeutic patients and is associated with lower 3HB concentration. Gavage of A. muciniphila significantly increases 3HB concentration, downregulates GPR43 and IL6 expression, and ameliorates radiation damage. Collectively, these results demonstrate that the gut microbiota, including A. muciniphila, induce higher concentrations of 3HB to block GPR43-mediated IL6 signaling, thereby conferring radioprotection. The findings reveal a novel implication of the gut-immune axis in radiation pathophysiology, with potential therapeutic applications.

18.
World J Gastrointest Oncol ; 16(5): 1908-1924, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764831

ABSTRACT

BACKGROUND: As the primary microtubule organizing center in animal cells, centrosome abnormalities are involved in human colon cancer. AIM: To explore the role of centrosome-related genes (CRGs) in colon cancer. METHODS: CRGs were collected from public databases. Consensus clustering analysis was performed to separate the Cancer Genome Atlas cohort. Univariate Cox and least absolute shrinkage selection operator regression analyses were performed to identify candidate prognostic CRGs and construct a centrosome-related signature (CRS) to score colon cancer patients. A nomogram was developed to evaluate the CRS risk in colon cancer patients. An integrated bioinformatics analysis was conducted to explore the correlation between the CRS and tumor immune microenvironment and response to immunotherapy, chemotherapy, and targeted therapy. Single-cell transcriptome analysis was conducted to examine the immune cell landscape of core prognostic genes. RESULTS: A total of 726 CRGs were collected from public databases. A CRS was constructed, which consisted of the following four genes: TSC1, AXIN2, COPS7A, and MTUS1. Colon cancer patients with a high-risk signature had poor survival. Patients with a high-risk signature exhibited decreased levels of plasma cells and activated memory CD4+ T cells. Regarding treatment response, patients with a high-risk signature were resistant to immunotherapy, chemotherapy, and targeted therapy. COPS7A expression was relatively high in endothelial cells and fibroblasts. MTUS1 expression was high in endothelial cells, fibroblasts, and malignant cells. CONCLUSION: We constructed a centrosome-related prognostic signature that can accurately predict the prognosis of colon cancer patients, contributing to the development of individualized treatment for colon cancer.

19.
Acad Radiol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704284

ABSTRACT

RATIONALE AND OBJECTIVES: This study aims to investigate whether the combination of Left atrial volume (LAV) and late gadolinium enhancement (LGE) is helpful in stratifying the risk in CABG patients with CAD with EF≤ 35%. MATERIALS AND METHODS: We conducted a retrospective analysis involving 205 CAD patients with EF≤ 35% who underwent CABG. All patients underwent gadolinium-enhanced CMR before surgery. The CMR images were analyzed for LAV, biventricular function, LGE, and left ventricular myocardial strain. Primary endpoint events included all-cause mortality, revascularization, re-hospitalization due to myocardial infarction or heart failure, and stroke after CABG. Multivariable Cox analysis was performed to identify independent risk factors for adverse outcomes. Kaplan-Meier curve analysis with the log-rank test was employed to evaluate survival estimates. RESULTS: A total of 55 patients reached the primary endpoints. Univariate Cox proportional hazard regression analysis showed that LAV index (LAVi), left ventricular EF (LVEF), right ventricular EF, LGE percent, and global longitudinal strain were significantly associated with the primary outcome (all P < 0.05). Multivariable analysis showed that LAVi (hazard ratio [HR] 1.05, [95% confidence interval (CI) 1.02-1.07], P < 0.001) and LGE percent (HR 1.10, [95% CI 1.06-1.15], P < 0.001) were independently associated with the primary outcome. Kaplan-Meier analysis indicated a significant increase in the risk of endpoint occurrence when patients exhibited LAVi≥ 51.0 mL/m2 and LGE≥ 11.6% (both P < 0.05). CONCLUSION: For CAD patients with LVEF≤ 35%, the combination of LAVi and LGE percent demonstrated good predictive value for adverse events after CABG. CMR is a helpful tool to risk-stratify patients with severe left ventricular dysfunction undergoing CABG.

20.
PLoS Pathog ; 20(5): e1012020, 2024 May.
Article in English | MEDLINE | ID: mdl-38743761

ABSTRACT

Scrub typhus is an acute febrile disease due to Orientia tsutsugamushi (Ot) infection and can be life-threatening with organ failure, hemorrhage, and fatality. Yet, little is known as to how the host reacts to Ot bacteria at early stages of infection; no reports have addressed the functional roles of type I versus type II interferon (IFN) responses in scrub typhus. In this study, we used comprehensive intradermal (i.d.) inoculation models and two clinically predominant Ot strains (Karp and Gilliam) to uncover early immune events. Karp infection induced sequential expression of Ifnb and Ifng in inflamed skin and draining lymph nodes at days 1 and 3 post-infection. Using double Ifnar1-/-Ifngr1-/- and Stat1-/- mice, we found that deficiency in IFN/STAT1 signaling resulted in lethal infection with profound pathology and skin eschar lesions, which resembled to human scrub typhus. Further analyses demonstrated that deficiency in IFN-γ, but not IFN-I, resulted in impaired NK cell and macrophage activation and uncontrolled bacterial growth and dissemination, leading to metabolic dysregulation, excessive inflammatory cell infiltration, and exacerbated tissue damage. NK cells were found to be the major cellular source of innate IFN-γ, contributing to the initial Ot control in the draining lymph nodes. In vitro studies with dendritic cell cultures revealed a superior antibacterial effect offered by IFN-γ than IFN-ß. Comparative in vivo studies with Karp- and Gilliam-infection revealed a crucial role of IFN-γ signaling in protection against progression of eschar lesions and Ot infection lethality. Additionally, our i.d. mouse models of lethal infection with eschar lesions are promising tools for immunological study and vaccine development for scrub typhus.


Subject(s)
Interferon-gamma , Mice, Knockout , Orientia tsutsugamushi , Scrub Typhus , Signal Transduction , Animals , Scrub Typhus/immunology , Scrub Typhus/microbiology , Orientia tsutsugamushi/immunology , Mice , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice, Inbred C57BL , Disease Models, Animal , Skin/microbiology , Skin/pathology , Skin/immunology , STAT1 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL