Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 648
Filter
2.
Nat Prod Res ; : 1-7, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949631

ABSTRACT

Seven polyketides, including an undescribed depsidone (1) and six previously reported 3,6,8-trihydroxy-1-methylxanthone (2), 7-hydroxy-2-(2-hydroxypropyl)-5-methylchromone (3), methyl3-chloro-6-hydroxy-2-(4-hy-droxy-2-methoxy-6-methylphenoxy)-4- methoxybenzoate (4), xylarianin A (5), 4,5-dihydroxy-6-(6'-methylsalicyloxy)-2-hydro-xymethyl-2-cyclohexen-1-one (6) and alternariol (7), have been isolated from cultures of the mangrove-derived fungus Penicillium robsamsonii HNNU0006. The structure of compound 1 was elucidated by extensive spectroscopic analysis and X-ray crystallography. Furthermore, all the compounds were evaluated their cytotoxic activities, and compounds 1 and 7 showed weak cytotoxicity against two cell lines Vero and A549 with IC50 values ranging from 95.6 and 296.5 µM, relative to the positive control Etoposide phosphate with IC50 values of 24.5 and 18.7 µM, respectively.

3.
Heliyon ; 10(11): e31775, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947426

ABSTRACT

Diabetic nephropathy (DN) has emerged as the foremost cause of end-stage renal disease (ESRD) globally. Endoplasmic reticulum (ER) stress plays a critical role in DN progression. Triterpenoid saponin from Aralia taibaiensis (sAT) has been reported to possess anti-diabetic and anti-oxidant effects. The aim of this study was to examine the influence of sAT on DN treatment and elucidate potential underlying mechanisms. A high-fat diet (HFD) and Streptozotocin (STZ) were employed to induce DN in male Sprague Dawley (SD) rats which were subsequently treated with varying concentrations of sAT for 8 weeks. Our findings reveal that different doses of sAT significantly mitigated hyperglycemia, reduced urinary albumin excretion, and decreased plasma creatinine and blood urea nitrogen levels in DN rats. Moreover, sAT administration improved body weight, alleviated renal fibrosis and histopathological changes in the diabetic kidneys. Notably, sAT treatment partially restored increased Bax expression and decreased Bcl-2 expression. Additionally, sAT inhibited ER stress-related proteins, including GRP78, p-PERK, ATF4 and CHOP in kidneys of DN rats. These results suggest that sAT ameliorated experimental diabetic nephropathy, at least in part, through ER stress pathway. These findings provide a scientific basis for the potential development of sAT as a therapeutic agent for DN treatment.

4.
J Colloid Interface Sci ; 675: 14-23, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964121

ABSTRACT

Conductive hydrogels are pivotal for the advancement of flexible sensors, electronic skin, and healthcare monitoring systems, facilitating transformative innovations. However, issues such as inadequate intrinsic compatibility, mismatched mechanical properties, and limited stability curtail their potential, resulting in compromised device efficacy and performance degradation. In this research, we engineered functional hydrogels featuring a dual-crosslinked network composed of (PA/PVA)-P(AM-AA) to address these challenges. This design eliminates the need for conductive additives, thereby enhancing intrinsic compatibility. Notably, the hydrogels exhibit exceptional mechanical properties, with high tensile strength (∼700 %), Young's modulus (∼5.33 MPa), increased strength (∼2.46 MPa) and toughness (∼6.59 MJ m-3). They also achieve a compressive strength of âˆ¼7.33 MPa at 80 % maximal compressive strain and maintain about 89 % transparency. Moreover, flexible sensors derived from these hydrogels demonstrate enhanced multimodal sensing capabilities, including temperature, strain, and pressure detection, enabling precise monitoring of human movements. The integration of multiple hydrogels into a three-dimensional sensor array facilitates detailed spatial pressure distribution mapping. By strategically applying dual-crosslinked network engineering and eliminating conductive additives, we have streamlined the design and manufacturing of hydrogels to meet the rising demand for high-performance wearable sensors.

5.
BMC Pediatr ; 24(1): 427, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961420

ABSTRACT

BACKGROUND: Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a rare and life-threatening autoimmune disease of the central nervous system. So far, only ten cases of PERM have been reported in children worldwide, including the one in this study. CASE PRESENTATION: We report a case of an 11-year-old boy with PERM with an initial presentation of abdominal pain, skin itching, dysuria, urinary retention, truncal and limb rigidity, spasms of the trunk and limbs during sleep, deep and peripheral sensory disturbances, and dysphagia. A tissue-based assay using peripheral blood was positive, demonstrated by fluorescent staining of mouse cerebellar sections. He showed gradual and persistent clinical improvement after immunotherapy with intravenous immunoglobulin, steroids, plasmapheresis and rituximab. CONCLUSIONS: We summarized the diagnosis and treatment of a patient with PERM and performed a literature review of pediatric PERM to raise awareness among pediatric neurologists. A better comprehension of this disease is required to improve its early diagnosis, treatment, and prognosis.


Subject(s)
Encephalomyelitis , Muscle Rigidity , Myoclonus , Humans , Male , Child , Muscle Rigidity/etiology , Encephalomyelitis/diagnosis , Encephalomyelitis/complications , Myoclonus/etiology , Myoclonus/diagnosis
6.
J Clin Oncol ; : JCO2302261, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950321

ABSTRACT

PURPOSE: To assess whether the integration of PD-1 inhibitor with total neoadjuvant therapy (iTNT) can lead to an improvement in complete responses (CRs) and favors a watch-and-wait (WW) strategy in patients with proficient mismatch repair or microsatellite stable (pMMR/MSS) locally advanced rectal cancer (LARC). PATIENTS AND METHODS: We conducted a prospective, multicenter, randomized, open-label, phase II trial using a pick-the-winner design. Eligible patients with clinical T3-4 and/or N+ rectal adenocarcinoma were randomly assigned to group A for short-course radiotherapy (SCRT) followed by six cycles of consolidation immunochemotherapy with capecitabine and oxaliplatin and toripalimab or to group B for two cycles of induction immunochemotherapy followed by SCRT and the rest four doses. Either total mesorectal excision or WW was applied on the basis of tumor response. The primary end point was CR which included pathological CR (pCR) after surgery and clinical CR (cCR) if WW was applicable, with hypothesis of an increased CR of 40% after iTNT compared with historical data of 25% after conventional TNT. RESULTS: Of the 130 patients enrolled, 121 pMMR/MSS patients were evaluable (62 in group A and 59 in group B). At a median follow-up of 19 months, CR was achieved at 56.5% in group A and 54.2% in group B. Both groups fulfilled the predefined statistical hypothesis (P < .001). Both groups reported a pCR rate of 50%. Respectively, 15 patients in each group underwent WW and remained disease free. The most frequent grade 3 to 4 toxicities were thrombocytopenia and neutropenia. Patients in group A had higher rate of cCR (43.5% v 35.6%) at restaging and lower rate of grade 3 to 4 thrombocytopenia (24.2% v 33.9%) during neoadjuvant treatment. CONCLUSION: The iTNT regimens remarkably improved CR rates in pMMR/MSS LARC compared with historical benchmark with acceptable toxicity. Up-front SCRT followed by immunochemotherapy was selected for future definitive study.

7.
J Nanobiotechnology ; 22(1): 393, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965602

ABSTRACT

BACKGROUND: The therapeutic strategies for acute ischemic stroke were faced with substantial constraints, emphasizing the necessity to safeguard neuronal cells during cerebral ischemia to reduce neurological impairments and enhance recovery outcomes. Despite its potential as a neuroprotective agent in stroke treatment, Chikusetsu saponin IVa encounters numerous challenges in clinical application. RESULT: Brain-targeted liposomes modified with THRre peptides showed substantial uptake by bEnd. 3 and PC-12 cells and demonstrated the ability to cross an in vitro blood-brain barrier model, subsequently accumulating in PC-12 cells. In vivo, they could significantly accumulate in rat brain. Treatment with C-IVa-LPs-THRre notably reduced the expression of proteins in the P2RX7/NLRP3/Caspase-1 pathway and inflammatory factors. This was evidenced by decreased cerebral infarct size and improved neurological function in MCAO rats. CONCLUSION: The findings indicate that C-IVa-LPs-THRre could serve as a promising strategy for targeting cerebral ischemia. This approach enhances drug concentration in the brain, mitigates pyroptosis, and improves the neuroinflammatory response associated with stroke.


Subject(s)
Blood-Brain Barrier , Ischemic Stroke , Liposomes , Neuroprotective Agents , Pyroptosis , Rats, Sprague-Dawley , Saponins , Animals , Saponins/pharmacology , Saponins/chemistry , Pyroptosis/drug effects , Rats , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Liposomes/chemistry , Male , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , PC12 Cells , Oleanolic Acid/pharmacology , Oleanolic Acid/chemistry , Oleanolic Acid/analogs & derivatives , Brain/metabolism , Brain/drug effects , Peptides/chemistry , Peptides/pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
8.
Front Med (Lausanne) ; 11: 1419635, 2024.
Article in English | MEDLINE | ID: mdl-38994339

ABSTRACT

Purpose: This study aimed to systematically evaluate the clinical effects of using transnasal high-flow nasal cannula (HFNC) and conventional oxygen therapy (COT) in patients undergoing gastrointestinal endoscopy. Methods: A comprehensive literature search was conducted from 2004 to April 2024 to collect relevant studies on the application of HFNC in patients undergoing gastrointestinal endoscopy. Multiple Chinese and English databases, including China National Knowledge Infrastructure (CNKI), Wanfang Data, Web of Science, PubMed, and Cochrane Library, were searched systematically for randomized controlled trials (RCTs). Two researchers independently screened the literature, extracted data, and assessed the risk of bias in the included studies. RevMan 5.4 software was utilized for conducting the network meta-analysis. Results: A total of 12 RCTs involving 3,726 patients were included. Meta-analysis results showed that HFNC reduced the incidence of hypoxemia and improved the minimum oxygen saturation (SpO2) compared with COT [odds ratio (OR) = 0.39, 95% confidence interval (CI): 0.29-0.53], [mean difference (MD) = 4.07, 95% CI: 3.14-5.01], and the difference was statistically significant. However, the baseline SpO2 levels and incidence of hypercapnia were not statistically significantly different between the HFNC and COT groups [MD = -0.21, 95% CI: -0.49-0.07]; [OR = 1.43, 95% CI: 0.95-2.15]. In terms of procedure time, the difference between HFNC and COT was not statistically significant, and subgroup analyses were performed for the different types of studies, with standard deviation in the gastroscopy group (MD = 0.09, 95% CI: -0.07-0.24) and the endoscopic retrograde cholangiopancreatography group (MD = 0.36, 95% CI: -0.50-1.23). The results demonstrated a significant reduction in the adoption of airway interventions in the HFNC group compared to the COT group (OR = 0.16, 95% CI: 0.05-0.53), with a statistically significant difference; this result was consistent with those of the included studies. Conclusion: The application of HFNC improves the incidence of hypoxemia, enhances oxygenation, and reduces airway interventions during gastrointestinal endoscopy. However, HFNC does not significantly affect baseline SpO2, hypercapnia, or procedure time. The limitations of this study must be acknowledged, and further high-quality studies should be conducted to validate these findings.

9.
Chem Sci ; 15(27): 10350-10358, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38994421

ABSTRACT

Nitrogen (N) doping of perovskite-type oxides is an effective method for enhancing their photocatalytic performance. Quantitative and qualitative analyses of the doped N species are essential for a deeper understanding of the catalytic activity enhancement mechanism. However, examining the N environment in perovskite-type oxides, particularly in the bulk, using conventional analytical techniques, such as X-ray photoelectron spectroscopy (XPS), is challenging. In this study, we propose a new analytical technique, advanced temperature-programmed desorption (TPD) up to 1600 °C, to complement the conventional methods. TPD can quantify all N species in bulk oxides. Moreover, it facilitates chemical speciation of N environments, such as substitutional and interstitial N species. This is verified by XPS, CHN elemental analysis, X-ray absorption spectroscopy, and in situ diffuse reflectance infrared Fourier-transform spectroscopy. This study demonstrates the feasibility of advanced TPD as a new analytical method that offers comprehensive information on the N species within N-doped oxide materials at the bulk level.

10.
Clin Genitourin Cancer ; 22(4): 102095, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833825

ABSTRACT

INTRODUCTION BACKGROUND: Disulfidptosis is a prevalent apoptotic mechanism, intrinsically linked to cancer prognosis. However, the specific involvement of disulfidptosis-related long non-coding RNA (DRLncRNAs) in Kidney renal clear cell carcinoma (KIRC) remains incompletely understood. This study aims to elucidate the potential prognostic significance of disulfidptosis-related LncRNAs in KIRC. MATERIALS AND METHODS: Expression profiles and clinical data of KIRC patients were retrieved from the TCGA database to discern differentially expressed DRLncRNAs correlated with overall survival. Cox univariate analysis, Lasso Regression, and Cox multivariate analysis were used to construct a clinical prediction model. RESULTS: Six signatures, namely FAM83C.AS1, AC136475.2, AC121338.2, AC026401.3, AC254562.3, and AC000050.2, were established to evaluate overall survival (OS) in the context of Kidney renal clear cell carcinoma (KIRC) in this study. Survival analysis and ROC curves demonstrated the strong predictive performance of the associated signature. The nomogram exhibited accurate prognostic predictions for overall patient survival, offering substantial clinical utility. Gene set enrichment analysis revealed that risk signals were enriched in various immune-related pathways. Furthermore, the risk features exhibited significant correlations with immune cells, immune function, immune cell infiltration, and immune checkpoints. CONCLUSION: This study has unveiled, for the first time, six disulfdptosis-related LncRNA signatures, laying a solid foundation for enhanced and precise prognostic predictions in KIRC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/mortality , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/mortality , Prognosis , Male , Female , Biomarkers, Tumor/genetics , Nomograms , Middle Aged , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Apoptosis , Survival Analysis
11.
Photodiagnosis Photodyn Ther ; 48: 104243, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38862086

ABSTRACT

Modern medical understanding suggests that hyperproliferative skin diseases (HSDs) are complex syndromes characterized by localized hypertrophy or hyperplasia and infiltration of inflammatory cells. Various treatments, including systemic and topical pharmacotherapy, laser interventions, photodynamic therapy, and surgery, have been proposed for managing HSDs. However, challenges such as wound healing and recurrence after laser treatment have hindered the effectiveness of laser therapy. To overcome these challenges, we conducted a study combining laser therapy with cold atmospheric plasma (CAP) for the treatment of HSDs. Seven patients with different forms of HSDs, who had not responded well to conventional treatments, were enrolled in the study. These HSDs included cases of erythroplasia of Queyrat, pyoderma gangrenosum, keloids and hypertrophic scars, cellulitis, cutaneous lichen planus, and verruca vulgaris. Laser therapy was performed to remove the hyperplastic skin lesions, followed immediately by daily CAP treatment. The results were promising, with all patients successfully treated and no recurrence observed during the follow-up periods. The combined application of CAP and laser therapy proved to be an effective and complementary strategy for managing HSDs. This innovative approach provide evidence for addressing the limitation of laser therapy by utilizing CAP to promote wound healing and mitigate inflammatory responses. Chinese Clinical Trial Registry (ChiCTR2300069993).

12.
Sci Total Environ ; 946: 174137, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909806

ABSTRACT

Poly/perfluoroalkyl substances (PFAS) are persistent organic pollutants and ubiquitous in aquatic environment, which are hazardous to organisms and human health. Several countries and regions have taken actions to regulate or limit the production and emission of some PFAS. Even though a series of water treatment technologies have been developed for removal of PFAS to eliminate their potential adverse effects, the removal and degradation performance are usually unsatisfactory. Photocatalytic degradation of PFAS is considered as one of the most effective approaches due to the mild operation conditions and environmental friendliness. This review systematically summarized the recent advances in photocatalytic degradation of PFAS based on heterogeneous photocatalysts, including TiO2-, Ga2O3-, In2O3-, ZnO-, Bi-based, and others. Overall, two mainly degradation mechanisms were involved, including photo-oxidation (involving the holes and oxidative radicals) and photo-reduction types (by e- and reductive radicals). The band structures of the photocatalysts, degradation pathways, structure-function relationship, and impacting factors were further discussed to elucidate the essential reasons for the enhanced degradation of PFAS. Furthermore, the review identified the major knowledge gaps to solve the issues of photocatalysis in real application. This paper also propounded several strategies to promote the design and optimization of high-efficient photocatalysts, and meet the challenges to remove PFAS through photodegradation technologies.

13.
BMC Infect Dis ; 24(1): 583, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867161

ABSTRACT

OBJECTIVE: The objective of this study was to conduct a comprehensive analysis of the molecular transmission networks and transmitted drug resistance (TDR) patterns among individuals newly diagnosed with HIV-1 in Nanjing. METHODS: Plasma samples were collected from newly diagnosed HIV patients in Nanjing between 2019 and 2021. The HIV pol gene was amplified, and the resulting sequences were utilized for determining TDR, identifying viral subtypes, and constructing molecular transmission network. Logistic regression analyses were employed to investigate the epidemiological characteristics associated with molecular transmission clusters. RESULTS: A total of 1161 HIV pol sequences were successfully extracted from newly diagnosed individuals, each accompanied by reliable epidemiologic information. The analysis revealed the presence of multiple HIV-1 subtypes, with CRF 07_BC (40.57%) and CRF01_AE (38.42%) being the most prevalent. Additionally, six other subtypes and unique recombinant forms (URFs) were identified. The prevalence of TDR among the newly diagnosed cases was 7.84% during the study period. Employing a genetic distance threshold of 1.50%, the construction of the molecular transmission network resulted in the identification of 137 clusters, encompassing 613 nodes, which accounted for approximately 52.80% of the cases. Multivariate analysis indicated that individuals within these clusters were more likely to be aged ≥ 60, unemployed, baseline CD4 cell count ≥ 200 cells/mm3, and infected with the CRF119_0107 (P < 0.05). Furthermore, the analysis of larger clusters revealed that individuals aged ≥ 60, peasants, those without TDR, and individuals infected with the CRF119_0107 were more likely to be part of these clusters. CONCLUSIONS: This study revealed the high risk of local HIV transmission and high TDR prevalence in Nanjing, especially the rapid spread of CRF119_0107. It is crucial to implement targeted interventions for the molecular transmission clusters identified in this study to effectively control the HIV epidemic.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV-1 , Humans , HIV-1/genetics , HIV-1/classification , HIV Infections/epidemiology , HIV Infections/transmission , HIV Infections/virology , Male , Female , Adult , China/epidemiology , Middle Aged , Drug Resistance, Viral/genetics , Young Adult , Prevalence , Genotype , Phylogeny , Adolescent , Molecular Epidemiology , pol Gene Products, Human Immunodeficiency Virus/genetics , Aged
14.
Vaccine ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897890

ABSTRACT

Subunit vaccines require an immunostimulant (adjuvant) and/or delivery system to induce immunity. However, currently, available adjuvants are either too dangerous in terms of side effects for human use (experimental adjuvants) or have limited efficacy and applicability. In this study, we examined the capacity of mannose-lipopeptide ligands to enhance the immunogenicity of a vaccine consisting of polyleucine(L15)-antigen conjugates anchored to liposomes. The clinically tested Group A Streptococcus (GAS) B-cell epitope, J8, combined with universal T helper PADRE (P) was used as the antigen. Six distinct mannose ligands were incorporated into neutral liposomes carrying L15PJ8. While induced antibody titers were relatively low, the ligand carrying mannose, glycine/lysine spacer, and two palmitic acids as liposomal membrane anchoring moieties (ligand 3), induced significantly higher IgG titers than non-mannosylated liposomes. The IgG titers were significantly enhanced when positively charged liposomes were employed. Importantly, the produced antibodies were able to kill GAS bacteria. Unexpectedly, the physical mixture of only ligand 3 and PJ8 produced self-assembled nanorods that induced antibody titers as high as those elicited by the lead liposomal formulation and antigen adjuvanted with the potent, but toxic, complete Freund's adjuvant (CFA). Antibodies produced upon immunization with PJ8 + 3 were even more opsonic than those induced by CFA + PJ8. Importantly, in contrast to CFA, ligand 3 did not induce observable adverse reactions or excessive inflammatory responses. Thus, we demonstrated that a mannose ligand, alone, can serve as an effective vaccine nanoadjuvant.

15.
Cell Commun Signal ; 22(1): 300, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816763

ABSTRACT

Optimizing the efficiency of definitive endoderm (DE) differentiation is necessary for the generation of diverse organ-like structures. In this study, we used the small molecule inhibitor saracatinib (SAR) to enhance DE differentiation of human embryonic stem cells and induced pluripotent stem cells. SAR significantly improved DE differentiation efficiency at low concentrations. The interaction between SAR and Focal Adhesion Kinase (FAK) was explored through RNA-seq and molecular docking simulations, which further supported the inhibition of DE differentiation by p-FAK overexpression in SAR-treated cells. In addition, we found that SAR inhibited the nuclear translocation of Yes-associated protein (YAP), a downstream effector of FAK, which promoted DE differentiation. Moreover, the addition of SAR enabled a significant reduction in activin A (AA) from 50 to 10 ng/mL without compromising DE differentiation efficiency. For induction of the pancreatic lineage, 10 ng/ml AA combined with SAR at the DE differentiation stage yielded a comparative number of PDX1+/NKX6.1+ pancreatic progenitor cells to those obtained by 50 ng/ml AA treatment. Our study highlights SAR as a potential modulator that facilitates the cost-effective generation of DE cells and provides insight into the orchestration of cell fate determination.


Subject(s)
Benzodioxoles , Cell Differentiation , Endoderm , Quinazolines , Signal Transduction , Humans , Cell Differentiation/drug effects , Endoderm/drug effects , Endoderm/cytology , Endoderm/metabolism , Benzodioxoles/pharmacology , Signal Transduction/drug effects , Quinazolines/pharmacology , Transcription Factors/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Adaptor Proteins, Signal Transducing/metabolism , YAP-Signaling Proteins/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Activins/metabolism , Molecular Docking Simulation
16.
Angew Chem Int Ed Engl ; : e202406153, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730419

ABSTRACT

Innovative molecule design strategy holds promise for the development of next-generation acceptor materials for efficient organic solar cells with low non-radiative energy loss (ΔEnr). In this study, we designed and prepared three novel acceptors, namely BTP-Biso, BTP-Bme and BTP-B, with sterically structured triisopropylbenzene, trimethylbenzene and benzene as side chains inserted into the shoulder of the central core. The progressively enlarged steric hindrance from BTP-B to BTP-Bme and BTP-Biso induces suppressed intramolecular rotation and altered the molecule packing mode in their aggregation states, leading to significant changes in absorption spectra and energy levels. By regulating the intermolecular π-π interactions, BTP-Bme possesses relatively reduced non-radiative recombination rate and extended exciton diffusion lengths. The binary device based on PB2 : BTP-Bme exhibits an impressive power conversion efficiency (PCE) of 18.5 % with a low ΔEnr of 0.19 eV. Furthermore, the ternary device comprising PB2 : PBDB-TF : BTP-Bme achieves an outstanding PCE of 19.3 %. The molecule design strategy in this study proposed new perspectives for developing high-performance acceptors with low ΔEnr in OSCs.

17.
Ann Hematol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805037

ABSTRACT

In this prospective, multicenter, Phase 2 clinical trial (NCT02987244), patients with peripheral T-cell lymphomas (PTCLs) who had responded to first-line chemotherapy with cyclophosphamide, doxorubicin or epirubicin, vincristine or vindesine, etoposide, and prednisone (Chi-CHOEP) were treated by autologous stem cell transplantation (ASCT) or with chidamide maintenance or observation. A total of 85 patients received one of the following interventions: ASCT (n = 15), chidamide maintenance (n = 44), and observation (n = 26). estimated 3 PFS and OS rates were 85.6%, 80.8%, and 49.4% (P = 0.001). The two-year OS rates were 85.6%, 80.8%, and 69.0% (P = 0.075).The ASCT and chidamide maintenance groups had significantly better progression-free survival (PFS) than the observation group (P = 0.001, and P = 0.01, respectively). The overall survival (OS) differed significantly between the chidamide maintenance group and the observation group ( P = 0.041). The multivariate and propensity score matching analyses for PFS revealed better outcomes in the subjects in the chidamide maintenance than observation groups (P = 0.02). The ASCT and chidamide maintenance groups had significant survival advantages over the observation group. In the post-remission stage of the untreated PTCL patients, single-agent chidamide maintenance demonstrated superior PFS and better OS than observation. Our findings highlight the potential benefit of chidamide in this patient subset, warranting further investigation through larger prospective trials. Clinical trial registration: clinicaltrial.gov, NCT02987244. Registered 8 December 2016, http://www.clinicaltrials.gov/ct2/show/NCT02987244 .

18.
Materials (Basel) ; 17(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793268

ABSTRACT

Commercial oxygen-free copper sheets were cold-rolled with reduction rates ranging from 20% to 87% and annealed at 400, 500 and 600 °C. The microstructure and texture evolution during the cold-rolling and annealing processes were studied using optical microscopy (OM), scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD). The results show that the deformation textures of {123}<634> (S), {112}<111> (Copper) and {110}<112> (Brass) were continuously enhanced with the increase in cold-rolling reduction. The orientations along the α-oriented fiber converged towards Brass, and the orientation density of ß fiber obviously increased when the rolling reduction exceeded 60%. The recrystallization texture was significantly affected by the cold-rolling reduction. After 60% cold-rolling reduction, Copper and S texture components gradually decreased, and the {011}<511> recrystallization texture component formed with the increase in annealing temperature. After 87% cold-rolling reduction, a strong Cube texture formed, and other textures were inhibited with the increase in annealing temperature. The strong Brass and S deformation texture was conducive to the formation of a strong Cube annealing texture. The density of the annealing twin boundary decreased with the increase in annealing temperature, and more annealing twin boundaries formed in the oxygen-free copper sheets with the increase in cold-rolling reduction.

19.
J Agric Food Chem ; 72(21): 12260-12269, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38759097

ABSTRACT

Thirty-four new pyrido[4,3-d]pyrimidine analogs were designed, synthesized, and characterized. The crystal structures for compounds 2c and 4f were measured by means of X-ray diffraction of single crystals. The bioassay results showed that most target compounds exhibited good fungicidal activities against Pyricularia oryzae, Rhizoctonia cerealis, Sclerotinia sclerotiorum, Botrytis cinerea, and Penicillium italicum at 16 µg/mL. Compounds 2l, 2m, 4f, and 4g possessed better fungicidal activities than the commercial fungicide epoxiconazole against B. cinerea. Their half maximal effective concentration (EC50) values were 0.191, 0.487, 0.369, 0.586, and 0.670 µg/mL, respectively. Furthermore, the inhibitory activities of the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results displayed that they had prominent activities. Compounds 2l, 2m, 4f, and 4g also showed better inhibitory activities than epoxiconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.219, 0.602, 0.422, 0.726, and 0.802 µg/mL, respectively. The results of molecular dynamics (MD) simulations exhibited that compounds 2l and 4f possessed a stronger affinity to CYP51 than epoxiconazole.


Subject(s)
14-alpha Demethylase Inhibitors , Ascomycota , Drug Design , Fungal Proteins , Fungicides, Industrial , Pyrimidines , Rhizoctonia , Sterol 14-Demethylase , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Sterol 14-Demethylase/chemistry , Sterol 14-Demethylase/metabolism , Structure-Activity Relationship , Rhizoctonia/drug effects , 14-alpha Demethylase Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemistry , 14-alpha Demethylase Inhibitors/chemical synthesis , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Ascomycota/drug effects , Ascomycota/enzymology , Models, Molecular , Botrytis/drug effects , Penicillium/drug effects , Penicillium/enzymology , Molecular Structure , Molecular Docking Simulation
20.
Biotechnol Biofuels Bioprod ; 17(1): 68, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802837

ABSTRACT

BACKGROUND: Bacterial nanocellulose (BNC), a natural polymer material, gained significant popularity among researchers and industry. It has great potential in areas, such as textile manufacturing, fiber-based paper, and packaging products, food industry, biomedical materials, and advanced functional bionanocomposites. The main current fermentation methods for BNC involved static culture, as the agitated culture methods had lower raw material conversion rates and resulted in non-uniform product formation. Currently, studies have shown that the production of BNC can be enhanced by incorporating specific additives into the culture medium. These additives included organic acids or polysaccharides. γ-Polyglutamic acid (γ-PGA), known for its high polymerization, excellent biodegradability, and environmental friendliness, has found extensive application in various industries including daily chemicals, medicine, food, and agriculture. RESULTS: In this particular study, 0.15 g/L of γ-PGA was incorporated as a medium additive to cultivate BNC under agitated culture conditions of 120 rpm and 30 â„ƒ. The BNC production increased remarkably by 209% in the medium with 0.15 g/L γ-PGA and initial pH of 5.0 compared to that in the standard medium, and BNC production increased by 7.3% in the medium with 0.06 g/L γ-PGA. The addition of γ-PGA as a medium additive resulted in significant improvements in BNC production. Similarly, at initial pH levels of 4.0 and 6.0, the BNC production also increased by 39.3% and 102.3%, respectively. To assess the characteristics of the BNC products, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis were used. The average diameter of BNC fibers, which was prepared from the medium adding 0.15 g/L γ-PGA, was twice thicker than that of BNC fibers prepared from the control culture medium. That might be because that polyglutamic acid relieved the BNC synthesis from the shear stress from the agitation. CONCLUSIONS: This experiment held great significance as it explored the use of a novel medium additive, γ-PGA, to improve the production and the glucose conversion rate in BNC fermentation. And the BNC fibers became thicker, with better thermal stability, higher crystallinity, and higher degree of polymerization (DPv). These findings lay a solid foundation for future large-scale fermentation production of BNC using bioreactors.

SELECTION OF CITATIONS
SEARCH DETAIL