Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
1.
Mar Pollut Bull ; 208: 117017, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39317107

ABSTRACT

For four decades, cordgrass (Spartina alterniflora) has invaded salt marshes in the Yellow Sea, altering physical, biogeochemical, and biological processes. Here, we investigated the ecological effects of S. alterniflora invasion on benthic environments compared to native halophytes. S. alterniflora contributed to higher carbon accumulation rates compared with bare tidal flat in sediments (3.4 times), through greater primary production and root biomass, compared to Suaeda japonica (2.5 times) and Phragmites australis (2.4 times) over the given period. The results showed that S. alterniflora eradication treatments inhibited its growth but did not significantly affect the benthic communities. Compared to P. australis and bare tidal flats, S. alterniflora invasion resulted in lower greenhouse gas emission and higher contributions to macrobenthos nutrition, and increased sediment stability and carbon burial. Overall, these multiple lines of evidence provide new insights on S. alterniflora invasion, suggesting that the current eradication policy would be carefully reviewed.

2.
Mar Pollut Bull ; 207: 116825, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142051

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) have raised increasing concern worldwide due to their continuous release and potential hazards to the ecosystem and human health. This study optimized the entropy weight model (EW-WRSR) that combines entropy weight with multi-criteria decision analysis to investigate pollution patterns of PPCPs in the coasts and estuaries. The results revealed that occurrences of PPCPs from the 1940s to the present were consistent with using PPCPs, different types of human activities, and local urban development. This helped better understand the history of PPCP contamination and evaluate the uncertainty of EW-WRSR. The model predicted hotspots of PPCPs that were consistent with the actual situation, indicating that PPCPs mainly enter the nearshore ecosystem by the form of sewage discharge and residual aquaculture. This study can provide method that identifying highly contaminated regions on a global scale.


Subject(s)
Cosmetics , Entropy , Environmental Monitoring , Estuaries , Water Pollutants, Chemical , China , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Pharmaceutical Preparations/analysis , Cosmetics/analysis , Models, Theoretical
3.
Mar Pollut Bull ; 207: 116861, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39216255

ABSTRACT

Bivalves, such as oysters and mussels, are exposed to environmental pollutants, like microplastics (MPs) and arsenic (As). This study investigated co-existence and interaction of MPs and As (total As and As species) in two bivalve species from the Chinese coastline. Smaller MPs (20-100 µm) averaged 30.98 items/g, while larger MPs (100-500 µm) averaged 2.98 items/g. Oysters contained more MPs (57.97 items/g) in comparison to mussels (11.10 items/g). In Contrast, mussels had a higher As concentrations (8.36-23.65 mg/kg) than oysters (4.97-11.02 mg/kg). The size and composition of MPs influenced As uptake and speciation in bivalves, with inorganic arsenic (iAs) and methylated arsenic (MMA and DMA) correlating with larger-sized MPs. Polyethylene (PE) may interact with the formation of arsenobetaine (AsB) in oyster. This study provides valuable insights into the interaction of MPs and As in marine ecosystems and highlights their implications for food safety.


Subject(s)
Arsenic , Bivalvia , Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Animals , China , Arsenic/analysis , Water Pollutants, Chemical/analysis , Microplastics/analysis , Bivalvia/chemistry , Humans , Biological Availability , Food Contamination/analysis , Risk Assessment
4.
Nat Commun ; 15(1): 5882, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003268

ABSTRACT

Solar-driven CO2 reduction to yield high-value chemicals presents an appealing avenue for combating climate change, yet achieving selective production of specific products remains a significant challenge. We showcase two osmium complexes, przpOs, and trzpOs, as CO2 reduction catalysts for selective CO2-to-methane conversion. Kinetically, the przpOs and trzpOs exhibit high CO2 reduction catalytic rate constants of 0.544 and 6.41 s-1, respectively. Under AM1.5 G irradiation, the optimal Si/TiO2/trzpOs have CH4 as the main product and >90% Faradaic efficiency, reaching -14.11 mA cm-2 photocurrent density at 0.0 VRHE. Density functional theory calculations reveal that the N atoms on the bipyrazole and triazole ligands effectively stabilize the CO2-adduct intermediates, which tend to be further hydrogenated to produce CH4, leading to their ultrahigh CO2-to-CH4 selectivity. These results are comparable to cutting-edge Si-based photocathodes for CO2 reduction, revealing a vast research potential in employing molecular catalysts for the photoelectrochemical conversion of CO2 to methane.

5.
Gut Microbes ; 16(1): 2350151, 2024.
Article in English | MEDLINE | ID: mdl-38715346

ABSTRACT

The extreme environmental conditions of a plateau seriously threaten human health. The relationship between gut microbiota and human health at high altitudes has been extensively investigated. However, no universal gut microbiota biomarkers have been identified in the plateau population, limiting research into gut microbiota and high-altitude adaptation. 668 16s rRNA samples were analyzed using meta-analysis to reduce batch effects and uncover microbiota biomarkers in the plateau population. Furthermore, the robustness of these biomarkers was validated. Mendelian randomization (MR) results indicated that Tibetan gut microbiota may mediate a reduced erythropoietic response. Functional analysis and qPCR revealed that butyrate may be a functional metabolite in high-altitude adaptation. A high-altitude rat model showed that butyrate reduced intestinal damage caused by high altitudes. According to cell experiments, butyrate may downregulate hypoxia-inducible factor-1α (HIF-1α) expression and blunt cellular responses to hypoxic stress. Our research found universally applicable biomarkers and investigated their potential roles in promoting human health at high altitudes.


Subject(s)
Altitude , Biomarkers , Butyrates , Gastrointestinal Microbiome , Hypoxia-Inducible Factor 1, alpha Subunit , Humans , Tibet , Butyrates/metabolism , Butyrates/analysis , Biomarkers/analysis , Animals , Rats , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Male , Adaptation, Physiological , Mendelian Randomization Analysis
6.
Mar Pollut Bull ; 202: 116307, 2024 May.
Article in English | MEDLINE | ID: mdl-38564820

ABSTRACT

This study utilizes ultraviolet and fluorescence spectroscopic indices of dissolved organic matter (DOM) from sediments, combined with machine learning (ML) models, to develop an optimized predictive model for estimating sediment total organic carbon (TOC) and identifying adjacent land-use types in coastal sediments from the Yellow and Bohai Seas. Our results indicate that ML models surpass traditional regression techniques in estimating TOC and classifying land-use types. Penalized Least Squares Regression (PLR) and Cubist models show exceptional TOC estimation capabilities, with PLR exhibiting the lowest training error and Cubist achieving a correlation coefficient 0.79. In land-use classification, Support Vector Machines achieved 85.6 % accuracy in training and 92.2 % in testing. Maximum fluorescence intensity and ultraviolet absorbance at 254 nm were crucial factors influencing TOC variations in coastal sediments. This study underscores the efficacy of ML models utilizing DOM optical indices for near real-time estimation of marine sediment TOC and land-use classification.


Subject(s)
Carbon , Environmental Monitoring , Geologic Sediments , Machine Learning , Geologic Sediments/chemistry , Carbon/analysis , Environmental Monitoring/methods
7.
Mar Pollut Bull ; 201: 116238, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461781

ABSTRACT

Emerging pollutants are hazardous to the ecological environment and human health, and these issues have attracted increasing attention from scholars. In the current study, the Taiwan Strait is long and narrow, highly influenced by terrestrial domains, and frequently disturbed by human activities. Conversely, the Luzon Strait is an open sea far from the shore, and the impact of human activities on it is minimal. The description of antibiotics in two different types of seas revealed that contaminants were most commonly detected in both straits. In particular, the coasts of the Minjiang River, Jinjiang River, and Jiulong River were found to be pollution hotspots in the Taiwan Strait. The calculation of risk quotients revealed that antibiotics were more sensitive to algae. Furthermore, estimation of the risk quotients of the mixtures found that antibiotics in the environment do not pose a high risk to aquatic organisms at different trophic levels.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Humans , Anti-Bacterial Agents/analysis , Taiwan , Philippines , Oceans and Seas , Environment , Rivers , Water Pollutants, Chemical/analysis , China , Environmental Monitoring
8.
Sci Total Environ ; 920: 170960, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38365019

ABSTRACT

Despite being phased out for decades, per- and polyfluoroalkyl substances (PFAS) are still widely detected in the environment and accumulated in many aquaculture organisms for human consumption. Thus, there is growing concern about whether fish consumption can cause PFAS-associated health impacts on humans since fish is a vital protein source for global populations. Here, we assess the potential driving factors of fish consumption by analysing the aquaculture, demographic and socio-economic data across 31 provinces/municipalities in China, followed by estimating the health risk of PFAS via fish consumption. We found that per capita fish consumption was primarily driven by fish production and total area for freshwater aquaculture, while urbanization rate and median age of consumers were also important. The health risk of PFAS was low (hazard quotient <1) in most provinces, while urban consumers were more prone to PFAS than rural consumers across all provinces. Since PFAS have been phased out worldwide, their health risk to humans through fish consumption would be lower than previously thought. To reduce PFAS intake for the high-risk populations, we recommend that fish should be well cooked before consumption, preferably using water-based cooking methods, and that alternative protein sources should be consumed more as the substitute for fish.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Animals , Humans , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Fishes , Water , Fresh Water
9.
Environ Int ; 178: 108125, 2023 08.
Article in English | MEDLINE | ID: mdl-37552929

ABSTRACT

As the third pole of the world and Asia's water tower, the Tibetan Plateau experiences daily release of pharmaceutical and personal care products (PPCPs) due to increasing human activity. This study aimed to explore the potential relationship between the concentration and composition of PPCPs and human activity, by assessing the occurrence of PPCPs in areas of typical human activity on the Qinghai-Tibet Plateau and evaluating their ecological risk. The results indicate that 28 out of 30 substances were detected in concentrations ranging from less than 1 ng/L to hundreds of ng/L, with the average concentration of most PPCPs in the Tibet Autonomous Region being higher than that in Qinghai Province. Among the detected substances, CAF, NOR, CTC, CIP, TCN, OTC, AZN, and DOX accounted for over 90% of the total concentration. The emission sources of PPCPs were identified by analyzing the correlation coefficients of soil and water samples, with excess PPCPs used by livestock breeding discharged directly into soil and then into surface water through leaching or runoff. By comparing the concentration and composition of PPCPs with those in other regions, this study found that CIP, ENR, LOM, NOR, CTC, DOX, OTC, and TCN were the most commonly used PPCPs in the Qinghai-Tibet Plateau. To assess the ecological risk of PPCPs, organisms at different trophic levels, including algae, crustaceans, fish, and insects, were selected. The prediction of the no effect concentration of each PPCP showed that NOR, CTC, TCN, CAF, and CBZ may have deleterious effects on water biota. This study can assist in identifying the emission characteristics of PPCPs from different types and intensities of human activities, as well as their occurrence and fate during the natural decay of aquatic systems.


Subject(s)
Cosmetics , Water Pollutants, Chemical , Animals , Humans , Tibet , Cold Climate , Environmental Monitoring/methods , Water , Cosmetics/analysis , Soil , Water Pollutants, Chemical/analysis , Pharmaceutical Preparations , China
10.
Environ Int ; 178: 108037, 2023 08.
Article in English | MEDLINE | ID: mdl-37354882

ABSTRACT

Historical trends of polycyclic aromatic hydrocarbons (PAHs) contamination were reconstructed from eleven sediment cores located in intertidal zones of the Yellow and Bohai seas for a period encompassing the last 80 years. The analysis encompassed 15 traditional PAHs (t-PAHs), 9 emerging PAHs (e-PAHs), and 30 halogenated PAHs (Hl-PAHs), including 10 chlorinated PAHs (Cl-PAHs) and 20 brominated PAHs (Br-PAHs). Concentrations of target PAHs were highest in industrial and municipal areas situated along the coast of the Bohai Sea, including Huludao, Yingkou, Tianjin, and Dandong, constituting a substantial mass inventory. All target PAHs showed increasing trends since the 1950s, reflecting the development history of South Korea and China. High molecular weight PAHs accumulated in sampling sites more than low molecular weight PAHs. A positive matrix factorization model showed that the PAH sources were coal and gasoline combustion (35%), diesel combustion (33%), and biomass combustion (32%). Over the last 80 years, the contribution of coal and gasoline combustion increased in all regions, while diesel combustion and biomass combustion varied across regions and over time. Toxicity equivalence values were highest for t-PAHs (>99% contribution), followed by Cl-PAHs, Br-PAHs, and e-PAHs. Concentrations of t-PAHs in Eastern Asia seas have increased since the 1900s, particularly in intertidal areas compared to subtidal areas. The intertidal zone removed 83% of the total flux of PAHs originating from land and thus appears to serve as a buffer zone against marine pollution. Overall, this study provides novel knowledge on the historical trends and sources of PAHs on a large scale, along with insights for future coastal management.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Gasoline/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Geologic Sediments/analysis , Environmental Monitoring , Oceans and Seas , China , Coal/analysis
11.
Environ Int ; 177: 108023, 2023 07.
Article in English | MEDLINE | ID: mdl-37301048

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have widespread application in industrial and civil areas due to their unique physical and chemical properties. With the increasingly stringent regulations of legacy PFAS, various novel alternatives have been developed and applied to meet the market demand. Legacy and novel PFAS pose potential threats to the ecological safety of coastal areas, however, little is known about their accumulation and transfer mechanism, especially after cooking treatment. This study investigated the biomagnification and trophic transfer characteristics of PFAS in seafood from the South China Sea, and assessed their health risks after cooking. Fifteen target PFAS were all detected in the samples, of which perfluorobutanoic acid (PFBA) was dominant with concentrations ranging from 0.76 to 4.12 ng/g ww. Trophic magnification factors (TMFs) > 1 were observed for perfluorooctane sulfonate (PFOS) and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (F-53B), indicating that these compounds experienced trophic magnification in the food web. The effects of different cooking styles on PFAS occurrence were further explored and the results suggested that ΣPFAS concentrations increased in most organisms after baking, while ΣPFAS amounts decreased basically after boiling and frying. Generally, there is a low health risk of exposure to PFAS when cooked seafood is consumed. This work provided quantitative evidence that cooking methods altered PFAS in seafood. Further, suggestions to mitigate the health risks of consuming PFAS-contaminated seafood were provided.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Bioaccumulation , Fluorocarbons/analysis , Alkanesulfonic Acids/analysis , Sulfonic Acids , Cooking , Seafood/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
12.
Mar Pollut Bull ; 192: 115112, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37276713

ABSTRACT

Continuously release of perfluoroalkyl substances (PFASs) would pose non-negligible impacts on environment, organisms, and human health. In present study, 18 PFASs in 7 typical economic invertebrates and their habitats were investigated from the South China Sea. The higher concentrations of PFASs in the nearshore water (6.61-15.54 ng/L) and sediment (0.82-8.84 ng/g) obviously due to frequent human activities. Long-chain PFASs have tendency to accumulate in sediment, however, short-chain PFASs dominated in biota. The acute reference dose (%ARfD) and hazard ratios (HR) of major PFASs in biota were all <100 %, and also below 1, respectively, which means that consumption of PFASs from seafood does not pose risk and threat to human health. However, it should be taken into account that the HR of PFHxA in Mimachlamys nobilis reached 0.82. Potential adverse effects toward human health induced by short-chain PFASs (such as <6 C) via invertebrate seafood consumption should be concerned.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Animals , Humans , Environmental Monitoring , Alkanesulfonic Acids/analysis , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , China , Invertebrates
13.
Environ Int ; 177: 108024, 2023 07.
Article in English | MEDLINE | ID: mdl-37315488

ABSTRACT

Perfluoroalkyl substance (PFAS) existed ubiquitously in the environment and could be ingested unconsciously with food which posed a disease risk to human health. Swordtip squid (Uroteuthis edulis) is one of the most popular and highly consumed seafood worldwide, with wide distribution and abundant biomass. Therefore, it is of great importance to the health of the public by reducing the health risks of squid consumption while preserving the benefits of squid to humans. In this study, the PFAS and fatty acids in squids were tested from the southeast coastal regions of China, a major habitat for squids. Relative higher concentrations of PFAS in squid were found in the subtropical zone of southern China (mean: 15.90 ng/g·dw) compared to those of the temperate zone of northern China (mean: 11.77 ng/g·dw). The digestive system had high tissue/muscle ratio (TMR) values, and the pattern of TMR among the same carbon-chain PFAS was similar. Cooking methods have a significant contribution to eliminating PFAS (in squids). PFAS were transferred from squids to other mediums after cooking, so juice and oil should be poured out to minimize PFAS exposure into body. The result showed that squids can be regarded as a healthy food by health benefits associated with fatty acids. Estimated daily intake (EDI) had the highest level in Korea via consuming squids through cooking processes compared with other countries. Based on the assessment of the hazard ratios (HRs), there was a high exposure risk of perfluoropentanoic acid (PFPeA) via taking squids for human health. This research provided the theoretical guidance of aquatic product processing in improving nutrition and reducing harmful substances.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Animals , Humans , Environmental Monitoring/methods , Decapodiformes , Seafood , Fatty Acids , Cooking , Nutrients , Fluorocarbons/analysis , Alkanesulfonic Acids/analysis , Water Pollutants, Chemical/analysis
14.
J Hazard Mater ; 445: 130587, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-37055950

ABSTRACT

Liquid crystal monomers (LCMs), an emerging group of organic pollutants related to electronic waste, have been frequently detected from various environmental matrices, including landfill leachate. The persistence of LCMs requires robust technology for remediation. The objectives of this study were to evaluate the feasibility, performance and mechanism of the remediation of a typical LCM 4-[difluoro(3,4,5-trifluorophenoxy)methyl]- 3,5-difluoro-4'-propylbiphenyl (DTFPB) via synchronized oxidation-adsorption (SOA) Fenton technology and verify its application in DTFPB-contaminated leachate. The SOA Fenton system could effectively degrade 93.5% of DTFPB and 5.6% of its total organic carbon (TOCDTFPB) by hydroxyl radical oxidation (molar ratio of Fe2+ to H2O2 of 1/4 and pH 2.5-3.0) following a pseudo-first-order model under 0.378 h-1. Additionally, synchronized adsorption of DTFPB and its degradation intermediates by in situ resultant ferric particles via hydrophobic interaction, complexation, and coprecipitation contributed to almost 100% of DTFPB and 33.4% of TOCDTFPB removal. Three possible degradation pathways involving eight products were proposed, and hydrophobic interactions might drive the adsorption process. It was first confirmed that the SOA Fenton system exhibited good performance in eliminating DTFPB and byproducts from landfill leachate. This study provides new insights into the potential of the Fenton process for the treatment of emerging LCMs contamination in wastewater.

15.
J Hazard Mater ; 445: 130555, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37055966

ABSTRACT

The ubiquitous distribution of perfluoroalkyl substances (PFASs) poses a threat to the health of aquatic organisms and humans. Bullfrogs are considered a popular aquatic food product in South China, providing high protein and tasty cuisine; however bullfrogs have been shown to contain significant concentrations of PFASs. However, the risk-benefit ratios of PFASs and nutrient contents in cooked bullfrogs are not well understood. PFASs and nutrients were investigated in raw and cooked specimens of cultured and wild bullfrogs in this study. Novel PFASs showed higher detection levels and accumulation in wild bullfrogs than in cultured bullfrogs. Potential factors such as fat and fatty acid ratio affected PFASs accumulation in different tissues and by different cooking methods of bullfrogs. All cooking methods can reduce PFASs in edible tissues while significantly enhancing the nutritive value index (NVI) compared to raw bullfrogs. Steaming was the most effective way to reduce PFASs (rate of reduction was over 66%) and resulted in a lower risk of contributing to arteriosclerosis than other cooking methods assessed by atherogenicity index (AI) values. Cultured bullfrogs instead of wild bullfrogs were recommended for human consumption, and steaming was regarded as a better cooking method in terms of risk-benefit concerns. Overall, this work provides quantitative analysis of cooking methods that alter PFASs and nutrients in bullfrogs.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Humans , Animals , Rana catesbeiana , Fluorocarbons/toxicity , Fluorocarbons/analysis , Food , Nutrients/analysis , Cooking , China , Water Pollutants, Chemical/analysis , Alkanesulfonic Acids/analysis , Environmental Monitoring
16.
Sci Total Environ ; 857(Pt 1): 159389, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36243077

ABSTRACT

Heavy metal pollution greatly harms the soil environment and poses threats to food safety and human health. This study aimed to quantify and analyze the sources of heavy metals and assess the health risks associated with the human intake of contaminated vegetables in South China. Heavy metals (Cd, As, Hg, Cu, Ni, Pb, Zn, and Cr) in soil and vegetables (leaf vegetables, legume vegetables, and cucurbits) were investigated and evaluated for contamination. By combining the correlation analysis (CA), positive matrix factorization (PMF), and GeoDetector model, source apportionments were comprehensively identified. Results showed that Cd was the predominant element in soils throughout the study area. Industrial (28.36 %, 20.24 %, 31.50 %), agricultural (27.19 %, 46.50 %, 27.30 %), besides traffic, atmospheric deposition and natural sources were identified as the dominant sources of heavy metals in GD01, GD02, and GD03, respectively. The human health risk assessment showed that the total non-cancer risk of heavy metals (i.e., Cr, Ni, As, Cd, and Pb) ingested through vegetables was 2.3E+00 for children and 9.67E-01 for adults, and the total cancer risk for children was 2.54E-02 and 1.07E-02 for adults, both of which exceeded acceptable levels. It is worth noting that children are more susceptible to health risks due to the consumption of contaminated vegetables than adults.


Subject(s)
Metals, Heavy , Soil Pollutants , Adult , Child , Humans , Soil , Vegetables , Soil Pollutants/analysis , Cadmium/analysis , Lead/analysis , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , China
17.
J Hazard Mater ; 438: 129558, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35999747

ABSTRACT

Increased anthropogenic activities have caused contamination of perfluoroalkyl substances (PFASs) in lakes worldwide. However, how to remediate their contamination remains unclear. In this study, a heavily polluted lake, Baiyangdian Lake in China, was selected to investigate current PFASs levels in multimedia, stimulate their transport fate based upon an optimized fugacity model, and finally identify appropriate remediation pathways. From 2008-2019, the average concentrations of PFASs in the lake increased approximately 7-40 times in the environment and biota. Spatially, with continuous import of perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA), barring fish, a noticeable north-south difference was distinguished in the PFASs composition in multimedia from the lake. Based on the optimized fugacity model simulation, the water phase was the primary transport path (~76.5%) for PFASs, with a total flux of 333 kg y-1. Compared with bioaccumulation fluxes in submerged plants (6.2 kg y-1), emerged plants (2.6 kg y-1), and fish (1.1 kg y-1), the exchange flux of PFASs between water and sediment remained high (~94 kg y-1). Considering remediation cost, sediment cleaning is currently the most cost-effective pathway, while harvesting submerged plant could be a promising pathway in the future. This study provides a basis for remediating PFASs-polluted lakes on a global scale.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Animals , Environmental Monitoring , Fishes , Fluorocarbons/analysis , Lakes , Plants , Water , Water Pollutants, Chemical/analysis
18.
Mar Pollut Bull ; 181: 113937, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35850088

ABSTRACT

A copepod bioassay with Tigriopus japonicus was applied to evaluate the relative ecotoxicity of sediments in the Yellow and Bohai seas, and contributions of individual PAHs to copepod toxicity were evaluated. Mean toxicity was greatest in the Yellow Sea of China, followed by the Bohai Sea and Yellow Sea of Korea. Elevated concentrations of sedimentary PAHs, alkylphenols, and styrene oligomers back-supported the significant toxicities observed in bioassay. Copepod toxicity in relation to PAHs indicated the greatest contribution by indeno[1,2,3-c,d]pyrene. However, lacked contribution by PAHs, viz., 2.4 and 3.0 % for the total immobilization and mortality, respectively, indicated a large proportion of unknown toxicants being widely distributed along the Yellow Sea Large Marine Ecosystem (YSLME) coastline. Overall, the present study provides useful baseline information for evaluating the potential sedimentary toxicants, with emphasizing further investigation to identify the unknown toxicants at an LME scale, and elsewhere.


Subject(s)
Copepoda , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , China , Ecosystem , Environmental Monitoring , Geologic Sediments , Oceans and Seas , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
19.
J Hazard Mater ; 435: 128908, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35500338

ABSTRACT

Novel aryl hydrocarbon receptor (AhR) agonists were identified in coastal sediments in the Yellow and Bohai Seas by use of a combination of effect-directed analysis (EDA) and in silico prediction. A total of 125 sediments were screened for AhR-mediated potencies using H4IIE-luc bioassay. Great potencies were observed in organic extracts, mid-polar fraction (F2), and subfractions of F2 (F2.6-F2.9) of sediments collected from Nantong, Qinhuangdao, and Yancheng. Less than 15% AhR potencies could be explained by detected dioxin-like PAHs. Full-scan screening analysis was conducted for the more potent fractions using GC-QTOFMS to investigate the presence of unmonitored AhR agonists. A five-step prioritization strategy was applied; 92 candidate compounds satisfied all criteria. Among these chemicals, thirteen were evaluated for AhR efficacy. Six compounds; benz[b]anthracene, 6-methylchrysene, 2-methylbenz[a]anthracene, 1-methylbenz[a]anthracene, 1,12-dimethylbenzo[c]phenanthrene, and indeno[1,2,3-cd]fluoranthene, exhibited significant AhR-mediated efficacies. 1,12-dimethylbenzo[c]phenanthrene and indeno[1,2,3-cd]fluoranthene were identified as novel AhR agonists. Potency balance analysis showed that the six newly identified AhR agonists explained 0.4-100% of the total AhR-mediated potencies determined. Overall, combining EDA and in silico prediction applied in this study demonstrated the benefits of assessing the potential toxic effects of previously unidentified AhR agonists in sediments from the coasts of China and Korea.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Anthracenes/analysis , Biological Assay , Environmental Monitoring , Geologic Sediments/chemistry , Phenanthrenes/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Receptors, Aryl Hydrocarbon
20.
Mar Pollut Bull ; 179: 113712, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35525060

ABSTRACT

Microplastic pollution in marine environment has been a growing public concern in recent years. This article analyzed the scientific literatures related to marine microplastics through a combination of social network analysis and bibliometrics. Researches related to microplastics have grown rapidly since 2011, with approximately two-thirds of the total number of articles published in the last three years. Researchers in United States and Europe have provided tremendous support, however, the efforts and progress of Chinese researchers cannot be ignored. Moreover, the international cooperation is getting closer, and related strategies are launched continuously. The results showed that Marine Pollution Bulletin is the most active journal. Through keyword analysis, we understand the development history and current hotspots of the whole microplastics researches, including ecological risks, interrelationship between microplastics and other pollutants, and detection methodology. Finally, some suggestions and perspectives for future microplastics research are provided.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Bibliometrics , Environmental Monitoring , Environmental Pollutants/analysis , Microplastics , Plastics/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL