Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 563
Filter
1.
Clin Transl Oncol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133386

ABSTRACT

PPM1F has been shown to play diverse biological functions in the progression of multiple tumors. PPM1F controls the T788/T789 phosphorylation switch of ITGB1 and regulates integrin activity. However, the impacts of PPM1F and ITGB1 on ovarian cancer (OV) progression remain unclear. Whether there is such a regulatory relationship between PPM1F and ITGB1 in ovarian cancer has not been studied. Therefore, the purpose of this study is to elucidate the function and the mechanism of PPM1F in ovarian cancer. The expression level and the survival curve of PPM1F were analyzed by databases. Gain of function and loss of function were applied to explore the function of PPM1F in ovarian cancer. A tumor formation assay in nude mice showed that knockdown of PPM1F inhibited tumor formation. We tested the effect of PPM1F on ITGB1 dephosphorylation in ovarian cancer cells by co-immunoprecipitation and western blotting. Loss of function was applied to investigate the function of ITGB1 in ovarian cancer. ITGB1-mut overexpression promotes the progression of ovarian cancer. Rescue assays showed the promoting effect of ITGB1-wt on ovarian cancer is attenuated due to the dephosphorylation of ITGB1-wt by PPM1F. PPM1F and ITGB1 play an oncogene function in ovarian cancer. PPM1F regulates the phosphorylation of ITGB1, which affects the occurrence and development of ovarian cancer.

2.
Neuroscience ; 556: 42-51, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39103043

ABSTRACT

Brain-computer interface (BCI) is a technology that directly connects signals between the human brain and a computer or other external device. Motor imagery electroencephalographic (MI-EEG) signals are considered a promising paradigm for BCI systems, with a wide range of potential applications in medical rehabilitation, human-computer interaction, and virtual reality. Accurate decoding of MI-EEG signals poses a significant challenge due to issues related to the quality of the collected EEG data and subject variability. Therefore, developing an efficient MI-EEG decoding network is crucial and warrants research. This paper proposes a loss joint training model based on the vision transformer (VIT) and the temporal convolutional network (EEG-VTTCNet) to classify MI-EEG signals. To take advantage of multiple modules together, the EEG-VTTCNet adopts a shared convolution strategy and a dual-branching strategy. The dual-branching modules perform complementary learning and jointly train shared convolutional modules with better performance. We conducted experiments on the BCI Competition IV-2a and IV-2b datasets, and the proposed network outperformed the current state-of-the-art techniques with an accuracy of 84.58% and 90.94%, respectively, for the subject-dependent mode. In addition, we used t-SNE to visualize the features extracted by the proposed network, further demonstrating the effectiveness of the feature extraction framework. We also conducted extensive ablation and hyperparameter tuning experiments to construct a robust network architecture that can be well generalized.

3.
Environ Sci Technol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135318

ABSTRACT

Vacuum-UV (185 nm, VUV) is widely applied to polish reverse osmosis permeate (ROP), such as the production of electronics-grade ultrapure water. In this study, the VUV oxidation of acetaldehyde, a common carbonyl in ROP, was found to be influenced by anions even at low concentrations. Interestingly, the influencing extent and mechanism varied depending on the anions. Bicarbonate minimally affected the VUV-photon absorption and •OH consumption, but at 5000 µg-C·L-1, it decreased the degradation of acetaldehyde by 58.7% possibly by scavenging organic radicals or other radical chain reactions. Nitrate strongly competed for VUV-photon absorption and •OH scavenging through the formation of nitrite, and at 500 µg-N·L-1, it decreased the removal rate of acetaldehyde degradation by 71.2% and the mineralization rate of dissolved organic carbon by 53.4%. Chloride competed for VUV-photon absorption and also generated reactive chlorine species, which did not affect acetaldehyde degradation but influenced the formation of organic byproducts. The radical chain reactions or activation of anions under VUV irradiation could compensate for the decrease in oxidation performance and need further investigation. In real ROPs, the VUV oxidation of acetaldehyde remained efficient, but mineralization was hindered due to nitrate and chloride anions. This study deepens the understanding of the photochemistry and feasibility of VUV in water with low concentrations of anions.

4.
J Colloid Interface Sci ; 676: 496-505, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39047377

ABSTRACT

The layered chalcogenide ZnIn2S4 (ZIS) exhibits photo-stability and a tunable band gap but is limited in photocatalytic applications, such as hydrogen (H2) production, due to rapid carrier recombination and slow charge separation. To overcome these limitations, we have synthesized a ternary MoS2/ZIS/graphene quantum dots (GQDs) heterojunction, wherein MoS2 and GQDs are strategically attached to ZIS interlaced nanoflakes, enhancing light absorption across the 500-1500 nm range. This heterojunction benefits from dual S-scheme interfaces between MoS2-ZIS and ZIS-GQDs, establishing directed internal electric fields (IEFs). These IEFs accelerate the transfer of photoinduced electrons from the conduction bands of MoS2 and GQDs to the valence band of ZIS, promoting rapid recombination with holes and facilitating efficient catalytic reactions with plentiful photoinduced electrons stemmed from the conduction band of ZIS. As a result, the photocatalytic H2 production rate of the MoS2/ZIS/GQDs heterojunction is measured at 21.63 mmol h-1 g-1, marking an increase of 36.7 times over pure ZIS. This research provides valuable insights into designing novel heterojunctions for improved charge separation and transfer for solar energy conversion applications.

5.
Front Psychol ; 15: 1390442, 2024.
Article in English | MEDLINE | ID: mdl-38993349

ABSTRACT

Objective: To investigate the factors that influence health literacy (HL) among Chinese patients with rheumatoid arthritis (RA) and furnish theoretical underpinnings for the development of intervention strategies aimed at enhancing patients' quality of life. Methods: From May 2022 to December 2022, a comprehensive survey was conducted among both outpatients and inpatients diagnosed with (RA) in a tertiary hospital in China. The survey utilized various instruments, including a general information questionnaire, a chronic disease patient health literacy scale, the Health Assessment Questionnaire-Disability Index (HAQ-DI), the Chinese-translated Rheumatoid Arthritis Self-Efficacy Scale, the Chinese-translated Rheumatoid Arthritis Stigma Scale, and the Chinese-translated Compliance Questionnaire for Rheumatology Treatments. Results: The average scores of HL, self-efficacy, medication adherence, and disability index were 83.54 ± 17.43, 84.91 ± 14.37, 70.16 ± 11.24, and 0.26 ± 0.44, respectively. HL in Chinese RA patients was negatively correlated with age, erythrocyte sedimentation rate (ESR), number of tender joints, number of swollen joints, and disease activity, while positively correlated with self-efficacy and medication adherence. Age, disease activity, disability index, self-efficacy, and medication adherence are predictive factors of HL, and a predictive model has been initially constructed. Conclusion: In the management of RA, healthcare professionals should develop and implement effective intervention measures by focusing on improving medication adherence, enhancing patients' self-efficacy, improving patients' physical function, and reducing disease activity. This will help enhance the health literacy and promote clinical outcomes in RA patients.

6.
Adv Sci (Weinh) ; : e2400163, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075843

ABSTRACT

Mastering the self-organization of nanoparticle morphologies is pivotal in soft matter physics and film growth. Silicon dioxide (SiO2) nanoparticles are an archetypical model of nanomotor in soft matter. Here, the emphasis is on the self-organizing behavior of SiO2 nanoparticles under extreme conditions. It is unveiled that manipulating the states of the metal substrate profoundly dictates the motion characteristics of SiO2 nanoparticles. This manipulation triggers the emergence of intricate morphologies and distinctive patterns. Employing a reaction-diffusion model, the fundamental roles played by Brownian motion and Marangoni-driven motion in shaping fractal structures and radial Turing patterns are demonstrated, respectively. Notably, these radial Turing patterns showcase hyperuniform order, challenging conventional notions of film morphology. These discoveries pave the way for crafting non-equilibrium morphological materials, poised with the potential for self-healing, adaptability, and innovative applications.

7.
J Hazard Mater ; 476: 135136, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39018597

ABSTRACT

This study investigates the effects of chlorine dioxide (ClO2) disinfection on the community structure, regrowth potential, and metabolic product secretion of disinfection-residual bacteria (DRB) in secondary effluent (SE), denitrification filter effluent (DFE), and ultrafiltration effluent (UE). Results show that ClO2 effectively reduces bacteria in SE and UE, achieving log removal values exceeding 3 at 1 mg/L within 30 min. A salient positive correlation (R2 > 0.95) exists between changes in total fluorescence intensity and disinfection efficacy. Post-treatment, Acinetobacter abundance increased in SE, while Pseudomonas decreased in DFE and UE. At lower ClO2 concentrations, Staphylococcus, Mycobacterium, Aeromonas, and Lactobacillus increased in DFE, but decreased at higher concentrations. After storage, bacterial counts in disinfected samples exceeded those in the control group, surpassing 105 CFU/mL. Despite an initial decline, species richness and evenness partially recovered but remained lower than control levels. Culturing DRB for 72 h showed elevated extracellular polymeric substances (EPS) secretion, quantified as total organic carbon (TOC), ranging from 5 to 27 mg/L, with significantly higher EPS in the disinfection group. Parallel factor analysis with self-organizing maps (PARAFAC-SOM) effectively differentiated water sample types and EPS fluorescent substances, underscoring the potential of three-dimensional fluorescence as an indirect measure of ClO2 disinfection efficacy.


Subject(s)
Bacteria , Chlorine Compounds , Disinfectants , Disinfection , Oxides , Water Purification , Chlorine Compounds/pharmacology , Oxides/pharmacology , Disinfection/methods , Disinfectants/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Bacteria/metabolism , Water Purification/methods , Water Microbiology
8.
Int J Surg ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38967517

ABSTRACT

BACKGROUND: The optimal surgical approach for intermediate-risk papillary thyroid carcinoma (IR-PTC) (according to ATA definition), whether total thyroidectomy (TT) or lobectomy (LT), has remained a contentious clinical grey area for several decades. This systematic review and meta-analysis aim to provide robust evidence and address this clinical dilemma comprehensively. MATERIALS AND METHODS: A comprehensive literature search was conducted in Pubmed, Embase, Web of Science, and the Cochrane Library from 1st January 2009 to 29th December 2023 to evaluate the impact of different surgical options (TT or LT) on patients with IR-PTC. The primary outcomes included survival, recurrence rates, and postoperative complications. I2 and sensitivity analysis was used to explore the heterogeneity. RESULTS: A total of 8 studies involving 2984 participants were included in this meta-analysis and systematic review. The results indicated that LT was a superior choice for mitigating complications compared to TT (RR, 0.32; 95%CI, 0.24-0.44, P<0.01), particularly for transient complications (RR, 0.24; 95%CI, 0.08-0.65, P<0.01), such as the transient parathyroid dysfunction (RR, 0.04; 95%CI, 0.01-0.15, P<0.01). However, TT did not increase the risk of recurrent laryngeal nerve palsy (RR, 0.78; 95%CI, 0.24-2.47, P=0.67), hemorrhage/seroma (RR, 0.77; 95%CI, 0.48-1.25, P=0.30) and permanent complications (RR, 0.18; 95%CI, 0.02-1.42, P=0.10). Besides, both LT and TT presented similar effect on survival outcomes (Overall Survival: RR, 1.00; 95%CI, 0.97-1.03, P=0.92, Disease-Specific Survival: RR, 0.99; 95%CI, 0.97-1.02, P=0.69, Recurrence-Free Survival: RR, 1.00; 95%CI, 0.96-1.05, P=0.86), recurrence (RR, 1.05; 95%CI, 0.76-1.46, P=0.76). CONCLUSION: The present meta-analysis revealed that TT did not yield improved outcomes in IR-PTC patients, but was associated with an increased incidence of temporary complications. In light of these findings, it may be advisable to consider LT as the optimal choice for IR-PTC patients.

9.
Molecules ; 29(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38999171

ABSTRACT

Faced with the increasing volume of retired lithium-ion batteries (LIBs), recycling and reusing the spent graphite (SG) is of great significance for resource sustainability. Here, a facile method for transforming the SG into a carbon framework as well as loading Fe2O3 to form a composite anode with a sandwich structure is proposed. Taking advantage of the fact that the layer spacing of the spent graphite naturally expands, impurities and intercalants are eliminated through microwave thermal shock to produce microwave-puffed graphite (MPG) with a distinct three-dimensional structure. Based on the mechanism of microwave-induced gasification intercalation, a Fe2O3-MPG intercalation compound (Fe2O3-MPGIC) anode material was constructed by introducing iron precursors between the framework layers and subsequently converting them into Fe2O3 through annealing. The Fe2O3-MPGIC anode exhibits a high reversible capacity of 1000.6 mAh g-1 at 200 mA g-1 after 100 cycles and a good cycling stability of 504.4 mAh g-1 at 2000 mA g-1 after 500 cycles. This work can provide a reference for the feasible recycling of SG and development of high-performance anode materials for LIBs.

10.
RSC Med Chem ; 15(6): 1828-1848, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38911148

ABSTRACT

Endometrial cancer (EC) is a common malignancy among women worldwide, and its recurrence makes it a common cause of cancer-related death. Surgery and external radiation, chemotherapy, or a combination of strategies are the cornerstone of therapy for EC patients. However, adjuvant treatment strategies face certain drawbacks, such as resistance to chemotherapeutic drugs; therefore, it is imperative to explore innovative therapeutic strategies to improve the prognosis of EC. With the development of pathology and pathophysiology, several biological targets associated with EC have been identified, including PI3K/Akt/mTOR, PARP, GSK-3ß, STAT-3, and VEGF. In this review, we summarize the progress of small molecule targeted therapies in terms of both basic research and clinical trials and provide cases of small molecules combined with fluorescence properties in the clinical applications of integrated diagnosis and treatment. We hope that this review will facilitate the further understanding of the regulatory mechanism governing the dysregulation of oncogenic signaling in EC and provide insights into the possible future directions of targeted therapeutic regimens for EC treatment by developing new agents with fluorescence properties for the clinical applications of integrated diagnosis and treatment.

11.
Analyst ; 149(14): 3721-3724, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38905006

ABSTRACT

Visual electrochemiluminescence (ECL) emission from L012 and hydrogen peroxide is generated from an all-solid-state electrochemical cell with a polyacrylamide hydrogel as the solid electrolyte. The emission is strong enough to be visualized with the naked eye, which offers a new idea for the design of an all-solid-state ECL based sensor in air.

12.
Cell Prolif ; : e13692, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943267

ABSTRACT

High-throughput sequencing has sparked increased research interest in RNA modifications, particularly tRNA methylation, and its connection to various diseases. However, the precise mechanisms underpinning the development of these diseases remain largely elusive. This review sheds light on the roles of several tRNA methylations (m1A, m3C, m5C, m1G, m2G, m7G, m5U, and Nm) in diverse biological functions, including metabolic processing, stability, protein interactions, and mitochondrial activities. It further outlines diseases linked to aberrant tRNA modifications, related enzymes, and potential underlying mechanisms. Moreover, disruptions in tRNA regulation and abnormalities in tRNA-derived small RNAs (tsRNAs) contribute to disease pathogenesis, highlighting their potential as biomarkers for disease diagnosis. The review also delves into the exploration of drugs development targeting tRNA methylation enzymes, emphasizing the therapeutic prospects of modulating these processes. Continued research is imperative for a comprehensive comprehension and integration of these molecular mechanisms in disease diagnosis and treatment.

13.
Nat Nanotechnol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844662

ABSTRACT

Nanomaterials with a large chiroptical response and high structural stability are desirable for advanced miniaturized optical and optoelectronic applications. One-dimensional (1D) nanotubes are robust crystals with inherent and continuously tunable chiral geometries. However, their chiroptical response is typically weak and hard to control, due to the diverse structures of the coaxial tubes. Here we demonstrate that as-grown multiwalled boron nitride nanotubes (BNNTs), featuring coherent-stacking structures including near monochirality, homo-handedness and unipolarity among the component tubes, exhibit a scalable nonlinear chiroptical response. This intrinsic architecture produces a strong nonlinear optical response in individual multiwalled BNNTs, enabling second-harmonic generation (SHG) with a conversion efficiency up to 0.01% and output power at the microwatt level-both excellent figures of merit in the 1D nanomaterials family. We further show that the rich chirality of the nanotubes introduces a controllable nonlinear geometric phase, producing a chirality-dependent SHG circular dichroism with values of -0.7 to +0.7. We envision that our 1D chiral platform will enable novel functions in compact nonlinear light sources and modulators.

14.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892175

ABSTRACT

Carbon dioxide (CO2) released by plants can serve as a cue for regulating insect behaviors. Hyphantria cunea is a widely distributed forestry pest that may use CO2 as a cue for foraging and oviposition. However, the molecular mechanism underlying its ability to sense CO2 has not been elucidated. Our initial study showed that CO2 is significantly attractive to H. cunea adults. Subsequently, 44 H. cunea gustatory receptors (GRs) were identified using transcriptome data, and 3 candidate CO2 receptors that are specifically expressed in the labial palps were identified. In vivo electrophysiological assays revealed that the labial palp is the primary organ for CO2 perception in H. cunea, which is similar to findings in other lepidopteran species. By using the Xenopus oocyte expression system, we showed that the HcunGR1 and HcunGR3 co-expressions produced a robust response to CO2, but HcunGR2 had an inhibitory effect on CO2 perception. Finally, immunohistochemical staining revealed sexual dimorphism in the CO2-sensitive labial pit organ glomerulus (LPOG). Taken together, our results clarified the mechanism by which H. cunea sense CO2, laying the foundation for further investigations into the role of CO2 in the rapid spread of H. cunea.


Subject(s)
Carbon Dioxide , Animals , Carbon Dioxide/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Female , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Male , Moths/metabolism , Moths/genetics , Transcriptome , Oocytes/metabolism , Phylogeny
15.
J Phys Chem B ; 128(25): 6123-6133, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38875519

ABSTRACT

The isatin group is widespread in nature and is considered to be a privileged building block for drug discovery. In order to develop novel SHP1 inhibitors with fluorescent properties as tools for SHP1 biology research, this work designed and synthesized a series of isatin derivatives. The presentive compound 5a showed good inhibitory activity against SHP1PTP with IC50 of 11 ± 3 µM, displayed about 92% inhibitory rate against MV-4-11 cell proliferation at the concentration of 20 µM, exhibited suitable fluorescent properties with a long emission wavelength and a large Stokes shift, and presented blue fluorescent imaging in HeLa cells with low cytotoxicity. This study could offer chemical tool to further understand SHP1 biology and develop novel SHP1 inhibitors in therapy.


Subject(s)
Cell Proliferation , Isatin , Isatin/chemistry , Isatin/pharmacology , Isatin/chemical synthesis , Humans , HeLa Cells , Cell Proliferation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , Cell Line, Tumor , Fluorescence
16.
J Hazard Mater ; 475: 134836, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889471

ABSTRACT

Urea abatement has been a prominent challenge for UPW production. This research proposed a productive strategy combining pre-chlorination and VUV/UV processes under acidic conditions to settle this problem. This study first revealed the reaction kinetics between urea and free chlorine in a large pH range from 2.5 to 9.6, where the reaction constant rate varied from 0.06 to 0.46 M-1·s-1. Substitution reaction mediated by Cl2 was the dominant process at low pH (pH<3). The differences of dominant pathways resulted in the differences in reaction products: The detected concentration of dichloramine at pH 2.5 was twice that at pH 4.5 and 6.5. Further, this study found that pre-chlorination/VUV/UV process could achieve the thorough removal of 2-mg/L urea with chlorination of less than 5 min and VUV/UV irradiation of less than 200 mJ/cm2. Chloride ions, low pH, and higher chlorine dosage were found to be the positive factors to improve urea removal efficiency in pre-chlorination/VUV/UV process. The reaction rate constants between chlorourea with·OH and·Cl were calculated to be 3.62 × 107 and 2.26 × 109 L·mol-1·s-1, respectively.·Cl,·OH and photolysis contributed 60.5 %, 22.9 % and 16.6 % in chlorourea degradation, respectively. Pre-chlorination/VUV/UV achieved a DOC removal efficiency of 78.5 %. And nitrogen in urea was converted into inorganic nitrogenous compounds. Finally, compared with direct VUV/UV/chlorine and VUV/UV/persulfate processes, this process saved more than 70 % of energy in VUV/UV unit.

17.
Anal Chem ; 96(23): 9621-9628, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38820543

ABSTRACT

Ulcerative colitis is a persistent inflammatory bowel disease characterized by inflammation and ulceration in the colon and gastrointestinal tract. It was indicated that the generation of hypochlorous acid (HClO) through the enzymatic activity of myeloperoxidase is significantly linked to ulcerative colitis. In this study, by assembling two hairpins (Hpa and Hpb) onto a quadrivalent cruciform DNA nanostructure, a novel HClO-activatable fluorescent probe was developed based on DNA nanomaterials (denoted MHDNA), which is sensitive, economic, simple, and stable. In the presence of HClO, the Trigger (T) was liberated from the MHDNA probe through a hydrolysis reaction between HClO and phosphorothioate (PS), which is modified on the MHDNA probe and has proved to exhibit particular susceptibility to the HClO. The liberated T subsequently initiated the opening of Hpa and Hpb to facilitate the catalyzed hairpin assembly (CHA) reaction, resulting in the changes of fluorescence and releasing T for recycled signal amplification to achieve sensitive detection of HClO (with a limit of detection 9.83 nM). Additionally, the MHDNA-based spatial-confinement effect shortens the physical distance between Hpa and Hpb and yields a high local concentration of the two reactive hairpins, achieving more rapid reaction kinetics in comparison to conventional CHA methods. Inspirationally, the MHDNA probe was effectively utilized for imaging HClO in ulcerative colitis mice, yielding valuable diagnostic insights for ulcerative colitis.


Subject(s)
DNA , Hypochlorous Acid , Nanostructures , Oxidation-Reduction , Hypochlorous Acid/analysis , Hypochlorous Acid/metabolism , Nanostructures/chemistry , Animals , Mice , DNA/chemistry , DNA/metabolism , Fluorescent Dyes/chemistry , Colitis, Ulcerative/metabolism , Optical Imaging , Inflammation/metabolism
18.
J Hazard Mater ; 474: 134703, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38805817

ABSTRACT

Graphitic carbon nitride has gained considerable attention as a visible-light photocatalyst. However, its photocatalytic efficiency is restricted by its limited capacity for absorbing visible light and swift recombination of charge carriers. To overcome this bottleneck, we fabricated an atomic Fe-dispersed ultrathin carbon nitride (Fe-UTCN) photocatalyst via one-step thermal polymerization. Fe-UTCN showed high efficiency in the photodegradation of acetaminophen (APAP), achieving > 90 % elimination within 60-min visible light irradiation. The anchoring of Fe atoms improved the photocatalytic activity of UTCN by narrowing the bandgap from 2.50 eV to 2.33 eV and suppressing radiative recombination. Calculations by density functional theory revealed that the Fe-N4 sites (adsorption energy of - 3.10 eV) were preferred over the UTCN sites (adsorption energy of - 0.18 eV) for the adsorption of oxygen and the subsequent formation of O2•-, the dominant reactive species in the degradation of APAP. Notably, the Fe-UTCN catalyst exhibited good stability after five successive runs and was applicable to complex water matrices. Therefore, Fe-UTCN, a noble-metal-free photocatalyst, is a promising candidate for visible light-driven water decontamination.

19.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2247-2261, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812239

ABSTRACT

This study employed microcirculation visualization and metabolomics methods to explore the effect and possible mechanism of Dalbergia cochinchinensis in ameliorating coronary microvascular dysfunction(CMD) induced by microsphere embolization in rats. Sixty SPF-grade male SD rats were randomized into sham, model, and low-, medium-, and high-dose [1.5, 3.0, and 6.0 g·kg~(-1)·d~(-1), respectively] D. cochinchinensis water extract groups. The rats in sham and model groups were administrated with equal volume of normal saline by gavage once a day for 7 consecutive days. The rat model of CMD was prepared by injecting polyethylene microspheres into the left ventricle, while the sham group was injected with an equal amount of normal saline. A blood flow meter was used to measure blood flow, and a blood rheometer to measure blood viscosity and fibrinogen content. An automatic biochemical analyzer and reagent kits were used to measure the serum levels of myocardial enzymes, glucose, and nitric oxide(NO). Hematoxylin-eosin(HE) staining was used to observe the pathological changes of myocardial tissue. DiI C12/C18 perfusion was used to infuse coronary microvessels, and the structural and morphological changes were observed using a confocal laser scanning microscope. AngioTool was used to analyze the vascular area, density, radius, and mean E lacunarity in the microsphere embolization area, and vascular blood flow resistance was calculated based on Poiseuille's law. Non-targeted metabolomics based on high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed screen potential biomarkers and differential metabolites regulated by D. cochinchinensis and the involved metabolic pathways were enriched. The pharmacodynamic results showed that compared with the model group, D. cochinchinensis significantly increased mean blood flow, reduced plasma fibrinogen content, lowered the levels of myocardial enzymes such as creatine kinase(CK), creatine kinase-MB(CK-MB), and lactate dehydrogenase(LDH), alleviate myocardial injury, and protect damaged myocardium. In addition, D. cochinchinensis significantly increased serum NO content, promoted vascular smooth muscle relaxation, dilated blood vessels, lowered serum glucose(GLU) level, improved myocardial energy metabolism, and alleviated pathological changes in myocardial fibrosis and inflammatory cell infiltration. The results of coronary microcirculation perfusion showed that D. cochinchinensis improved the vascular morphology, increased the vascular area, density, and radius, reduced vascular mean E lacunarity and blood flow resistance, and alleviated vascular endothelial damage in CMD rats. The results of metabolomics identified 45 differential metabolites between sham and model groups, and D. cochinchinensis recovered the levels 25 differential metabolites, which were involved in 8 pathways including arachidonic acid metabolism, arginine biosynthesis, and sphingolipids metabolism. D. cochinchinensis can ameliorate coronary microcirculation dysfunction caused by microsphere embolization in rats, and it may alleviate the pathological changes of CMD rats by regulating inflammatory reaction, endothelial damage, and phospholipid metabolism.


Subject(s)
Dalbergia , Drugs, Chinese Herbal , Metabolomics , Microcirculation , Rats, Sprague-Dawley , Animals , Male , Rats , Microcirculation/drug effects , Dalbergia/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Myocardium/metabolism , Coronary Vessels/physiopathology , Humans
20.
Pulm Circ ; 14(2): e12387, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751611

ABSTRACT

Surgical indications for patients with pulmonary arterial hypertension (PAH) and congenital heart defects are controversial. The treat and repair strategy has demonstrated efficacy in adult populations, but there have been no studies on pediatric patients. This study included pediatric patients with PAH and simple congenital heart defects who underwent corrective repair between 2012 and 2021. According to the preoperative treatment strategies, the patients were divided into a regular strategy group (Group 1) and a treat-and-repair strategy group (Group 2). Postoperative recovery and follow-up results were compared between the two groups. A total of 33 patients were included in this study. Group 1 consisted of 19 patients, whereas Group 2 consisted of 14 patients. The pulmonary vascular resistance index in Group 2 was higher than that in Group 1 (10.9 ± 4.1 vs. 8.2 ± 1.6 WU, p = 0.031). There were no differences in postoperative recovery between the two groups (p > 0.05). During follow-up, five patients were lost (three in Group 1 and two in Group 2). The median follow-up period was 59 months. One patient died in Group 1, and two patients died in Group 2. There was no significant difference in the survival curve (p = 0.39). At the last follow-up, another seven patients had experienced a non-low-risk condition, with a total of three non-low-risk patients in Group 1 and seven in Group 2, including one patient in each group who had a history of ICU admission. According to the ROC curve, a preoperative PVRi <8.2 WU×m2 can predict postoperative persistent low-risk state, PVRi <5.2 WU×m2 can avoid postoperative death and/or ICU administration. In pediatric patients with PAH and simple congenital heart defects, the treat and repair strategies may provide surgery opportunities, PVRi should be <8 WU×m2, and <5.2 WU×m2 is the best choice.

SELECTION OF CITATIONS
SEARCH DETAIL