Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Plant Physiol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39133898

ABSTRACT

The extensive use of nitrogen fertilizer boosts rice (Oryza sativa) production but also harms ecosystems. Therefore, enhancing crop nitrogen use efficiency is crucial. Here, we performed map-based cloning and identified the EARLY FLOWERING3 (ELF3) like protein-encoding gene OsELF3-1, which confers enhanced nitrogen uptake in rice. OsELF3-1 forms a ternary complex (OsEC) with OsELF4s and OsLUX, the putative orthologs of ELF4 and LUX ARRHYTHMO (LUX) in Arabidopsis (Arabidopsis thaliana), respectively. OsEC directly binds to the promoter of Grain number, plant height, and heading date7 (Ghd7) and represses its expression. Ghd7 encodes a transcription factor that has major effects on multiple agronomic traits. Ghd7 is also a transcriptional repressor and directly suppresses the expression of ABC1 REPRESSOR1 (ARE1), a negative regulator of nitrogen use efficiency. Therefore, targeting the OsEC-Ghd7-ARE1 module offers an approach to enhance nitrogen uptake, presenting promising avenues for sustainable agriculture.

2.
New Phytol ; 243(6): 2251-2264, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39073105

ABSTRACT

The shape of rice grains not only determines the thousand-grain weight but also correlates closely with the grain quality. Here we identified an ultra-large grain accession (ULG) with a thousand-grain weight exceeding 60 g. The integrated analysis of QTL, BSA, de novo genome assembled, transcription sequencing, and gene editing was conducted to dissect the molecular basis of the ULG formation. The ULG pyramided advantageous alleles from at least four known grain-shaping genes, OsLG3, OsMADS1, GS3, GL3.1, and one novel locus, qULG2-b, which encoded a leucine-rich repeat receptor-like kinase. The collective impacts of OsLG3, OsMADS1, GS3, and GL3.1 on grain size were confirmed in transgenic plants and near-isogenic lines. The transcriptome analysis identified 112 genes cooperatively regulated by these four genes that were prominently involved in photosynthesis and carbon metabolism. By leveraging the pleiotropy of these genes, we enhanced the grain yield, appearance, and stress tolerance of rice var. SN265. Beyond showcasing the pyramiding of multiple grain size regulation genes that can produce ULG, our study provides a theoretical framework and valuable genomic resources for improving rice variety by leveraging the pleiotropy of grain size regulated genes.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , Oryza , Quantitative Trait Loci , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Quantitative Trait Loci/genetics , Genes, Plant , Plants, Genetically Modified , Plant Proteins/metabolism , Plant Proteins/genetics , Phenotype , Alleles , Stress, Physiological/genetics
3.
Plant Biotechnol J ; 21(1): 202-218, 2023 01.
Article in English | MEDLINE | ID: mdl-36196761

ABSTRACT

Temperate japonica/geng (GJ) rice yield has significantly improved due to intensive breeding efforts, dramatically enhancing global food security. However, little is known about the underlying genomic structural variations (SVs) responsible for this improvement. We compared 58 long-read assemblies comprising cultivated and wild rice species in the present study, revealing 156 319 SVs. The phylogenomic analysis based on the SV dataset detected the putatively selected region of GJ sub-populations. A significant portion of the detected SVs overlapped with genic regions were found to influence the expression of involved genes inside GJ assemblies. Integrating the SVs and causal genetic variants underlying agronomic traits into the analysis enables the precise identification of breeding signatures resulting from complex breeding histories aimed at stress tolerance, yield potential and quality improvement. Further, the results demonstrated genomic and genetic evidence that the SV in the promoter of LTG1 is accounting for chilling sensitivity, and the increased copy numbers of GNP1 were associated with positive effects on grain number. In summary, the current study provides genomic resources for retracing the properties of SVs-shaped agronomic traits during previous breeding procedures, which will assist future genetic, genomic and breeding research on rice.


Subject(s)
Oryza , Oryza/genetics , Plant Breeding , Genomics/methods , Phenotype , Edible Grain
SELECTION OF CITATIONS
SEARCH DETAIL