Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
BMC Nurs ; 23(1): 553, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135083

ABSTRACT

BACKGROUND: Decision fatigue is a new concept in the field of psychology and refers to a state of fatigue alongside impaired cognitive processing and emotional regulation ability. Previous studies have confirmed that nurses are prone to decision fatigue, and nurses who experience decision fatigue may implement nursing measures that are inconsistent with clinical evidence, thus affecting patients' benefits. COVID-19, as a large-scale global public health emergency, increased the workload and burden of nurses and aggravated decision fatigue. However, the factors leading to decision fatigue among nurses have not yet been identified. METHODS: This study is guided by interpretative phenomenology. During the epidemic period of COVID-19: From November 2022 to February 2023, a one-to-one, semi-structured in-depth interview was conducted among nurses with decision fatigue experience who were participating in front-line work in Jilin Province using homogenous sampling. The interview recordings and related data were transcribed into text within 24 h, and data analysis was assisted by NVivo 12.0 software. RESULTS: After a total of 14 front-line nurses were analyzed in this study, The thematic level reaches saturation, the findings present a persuasive and coherent narrative, and the study is terminated, and finally extracted and formed three core themes: "Cognition, influence and attitude of decision fatigue", "Approaching factors of decision fatigue" and "Avoidant factors of decision fatigue". CONCLUSION: This study confirmed that decision fatigue was widespread in the work of front-line nurses, affecting the physical and psychological health of nurses, the quality of nursing work, the degree of benefit of patients and the clinical outcome. However, nursing staff do not know enough about decision fatigue, so the popularization and research of decision fatigue should be strengthened. Improve the attention of medical institutions, nursing managers and nursing staff.Some suggestions are put forward for the intervention of decision fatigue through personnel, task, tool and technology, organization and environment.

2.
Front Endocrinol (Lausanne) ; 15: 1392306, 2024.
Article in English | MEDLINE | ID: mdl-39114293

ABSTRACT

Background: Type 2 diabetes mellitus(T2DM) is characterized by hyperglycemia. Gut microbiome adjustment plays a positive part in glucose regulation, which has become a hotspot. Probiotics have been studied for their potential to control the gut flora and to treat T2DM. However, the conclusion of its glucose-lowering effect is inconsistent based on different probiotic intervention times. Objectives: To comprehensively evaluate how various probiotic intervention times affect glycemic control in people with T2DM. Methods: We retrieved PubMed, Embase, Web of Science, and Cochrane Library on randomized controlled trials(RCTs)regarding the impact of probiotics on glycemic control in patients with T2DM from the inception to November 16, 2023. Separately, two researchers conducted a literature analysis, data extraction, and bias risk assessment of the involved studies. We followed the PRISMA guidelines, used RevMan 5.4 software for meta-analysis, and assessed the risk of bias by applying the Cochrane Handbook for Systematic Reviews 5.1.0. Results: We included eight RCTs with 507 patients. Meta-analysis revealed that the use of probiotics might considerably reduce levels of glycosylated hemoglobin (HbA1c) {mean deviation (MD) = -0.33, 95% confidence interval (CI) (-0.59, -0.07), p = 0.01}, Insulin {standard mean deviation (SMD) = -0.48, 95% CI (-0.74, -0.22), p = 0.0003} and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR){SMD = -1.36, 95% CI (-2.30, -0.41), p = 0.005} than placebo group. No statistically significant differences were found regarding fasting blood glucose (FBG) and body mass index (BMI) {SMD = -0.39, 95% CI (-0.83, 0.05), p = 0.08}, {SMD = -0.40, 95% CI (-1.07, 0.27), p = 0.25}, respectively. Subgroup analyses, grouped by intervention times, showed that six to eight weeks of intervention improved HbA1c compared to the control group (p < 0.05), both six to eight weeks and 12-24 weeks had a better intervention effect on Insulin, and HOMA-IR (p < 0.05).In contrast, there was no statistically significant variation in the length between FBG and BMI regarding duration. Conclusion: This meta-analysis found probiotics at different intervention times play a positive role in modulating glucose in T2DM, specifically for HbA1c in six to eight weeks, Insulin and HOMA-IR in six to eight weeks, and 12-24 weeks. To confirm our findings, further excellent large-sample research is still required. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier CRD42023483325.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glycemic Control , Probiotics , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/blood , Probiotics/therapeutic use , Probiotics/administration & dosage , Humans , Glycemic Control/methods , Blood Glucose/metabolism , Gastrointestinal Microbiome , Randomized Controlled Trials as Topic , Time Factors , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism
3.
J Adv Nurs ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605460

ABSTRACT

AIMS: Early identification and intervention of the frailty of the elderly will help lighten the burden of social medical care and improve the quality of life of the elderly. Therefore, we used machine learning (ML) algorithm to develop models to predict frailty risk in the elderly. DESIGN: A prospective cohort study. METHODS: We collected data on 6997 elderly people from Chinese Longitudinal Healthy Longevity Study wave 6-7 surveys (2011-2012, 2014). After the baseline survey in 1998 (wave 1), the project conducted follow-up surveys (wave 2-8) in 2000-2018. The osteoporotic fractures index was used to assess frailty. Four ML algorithms (random forest [RF], support vector machine, XGBoost and logistic regression [LR]) were used to develop models to identify the risk factors of frailty and predict the risk of frailty. Different ML models were used for the prediction of frailty risk in the elderly and frailty risk was trained on a cohort of 4385 elderly people with frailty (split into a training cohort [75%] and internal validation cohort [25%]). The best-performing model for each study outcome was tested in an external validation cohort of 6997 elderly people with frailty pooled from the surveys (wave 6-7). Model performance was assessed by receiver operating curve and F2-score. RESULTS: Among the four ML models, the F2-score values were similar (0.91 vs. 0.91 vs. 0.88 vs. 0.90), and the area under the curve (AUC) values of RF model was the highest (0.75), followed by LR model (0.74). In the final two models, the AUC values of RF and LR model were similar (0.77 vs. 0.76) and their accuracy was identical (87.4% vs. 87.4%). CONCLUSION: Our study developed a preliminary prediction model based on two different ML approaches to help predict frailty risk in the elderly. IMPACT: The presented models from this study can be used to inform healthcare providers to predict the frailty probability among older adults and maybe help guide the development of effective frailty risk management interventions. IMPLICATIONS FOR THE PROFESSION AND/OR PATIENT CARE: Detecting frailty at an early stage and implementing timely targeted interventions may help to improve the allocation of health care resources and to reduce frailty-related burden. Identifying risk factors for frailty could be beneficial to provide tailored and personalized care intervention for older adults to more accurately prevent or improve their frail conditions so as to improve their quality of life. REPORTING METHOD: The study has adhered to STROBE guidelines. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.

4.
Methods Mol Biol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38647865

ABSTRACT

Organoids have emerged as robust tools for unravelling the mechanisms that underly tissue development. They also serve as important in vitro systems for studying fundamentals of stem cell behavior and for building advanced disease models. During early development, a crucial step in the formation of the central nervous system is patterning of the neural tube dorsal-ventral (DV) axis. Here we describe a simple and rapid culture protocol to produce human neuroepithelial (NE) cysts and DV-patterned organoids from single human-induced pluripotent stem cells (hiPSCs). Rather than being embedded within a matrix, hiPSCs undergo a 5-day differentiation process in medium containing soluble extracellular matrix and are allowed to self-organize into 3D cysts with defined central lumen structures that express early neuroepithelial markers. Moreover, upon stimulation with sonic hedgehog proteins and all-trans retinoic acid, NE cysts further develop into NE organoids with DV patterning. This rapid generation of patterned NE organoids using simple culture conditions enables mimicking, monitoring, and longitudinal manipulation of NE cell behavior. This straightforward culture system makes NE organoids a tractable model for studying neural stem cell self-organization and early neural tube developmental events.

5.
Int Immunopharmacol ; 130: 111798, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38442583

ABSTRACT

Asthma is a serious global health problem affecting 300 million persons around the world. Mast cells (MCs) play a major role in airway hyperresponsiveness (AHR) and inflammation in asthma, their exact effector mechanisms remain unclear. Here, we aim to investigate the inhibitory effect of Bergapten (BER) on MRGPRX2-mediated MCs activation through asthma model. Mouse model of asthma was established to examine the anti-asthmatic effects of BER. Calcium (Ca2+) influx, ß-hexosaminidase and histamine release were used to assess MCs degranulation in vitro. RNA-Seq technique was conducted to study the gene expression profile. RT-PCR and Western Blotting were performed to examine targeting molecules expression. BER inhibited AHR, inflammation, mucous secretion, collagen deposition and lung MCs activation in asthma model. BER dramatically reduced levels of IL4, IL-5, and IL-13 in bronchoalveolar lavage fluid (BALF), as well as inflammatory cells. BER also reduced serum IgE levels. Pretreatment MCs with BER inhibited substance P (SP)-induced Ca2+ influx, degranulation and cytokines release from MCs. BER also reduced the phosphorylation levels of PKC, PLC, IP3R, AKT and ERK, which were induced by SP. Furthermore, RNA-seq analysis showed that SP up-regulated 68 genes in MCs, while were reversed by BER. Among these 68 genes, SP up-regulated NR4A1 expression, and this effect was inhibited by BER. Meanwhile, knockdown of NR4A1 significantly attenuated SP-induced MCs degranulation. In conclusion, NR4A1 plays a major role in MRGPRX2-mediated MCs activation, BER inhibited AHR and inflammation in asthmatic model by inhibiting MCs activation through MRGPRX2-NR4A1 pathway.


Subject(s)
5-Methoxypsoralen , Anti-Inflammatory Agents , Asthma , Mast Cells , Animals , Mice , 5-Methoxypsoralen/pharmacology , 5-Methoxypsoralen/therapeutic use , Asthma/drug therapy , Cell Degranulation , Inflammation/drug therapy , Lung/metabolism , Mast Cells/drug effects , Receptors, G-Protein-Coupled/metabolism , Substance P/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL , Female
7.
Mol Neurobiol ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388774

ABSTRACT

This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.

8.
Nanomaterials (Basel) ; 13(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686998

ABSTRACT

Lithium-sulfur (Li-S) batteries are regarded as highly promising energy storage devices due to their high theoretical specific capacity and high energy density. Nevertheless, the commercial application of Li-S batteries is still restricted by poor electrochemical performance. Herein, beaded nanofibers (BNFs) consisting of carbon and CoSe2 nanoparticles (CoSe2/C BNFs) were prepared by electrospinning combined with carbonization and selenization. Benefitting from the synergistic effect of physical adsorption and chemical catalysis, the CoSe2/C BNFs can effectively inhibit the shuttle effect of lithium polysulfides and improve the rate performance and cycle stability of Li-S batteries. The three-dimensional conductive network provides a fast electron and ion transport pathway as well as sufficient space for alleviating the volume change. CoSe2 can not only effectively adsorb the lithium polysulfides but also accelerate their conversion reaction. The CoSe2/C BNFs-S cathode has a high reversible discharge specific capacity of 919.2 mAh g-1 at 0.1 C and presents excellent cycle stability with a low-capacity decay rate of 0.05% per cycle for 600 cycles at 1 C. The combination of the beaded carbon nanofibers and polar metal selenides sheds light on designing high-performance sulfur-based cathodes.

9.
Front Cell Neurosci ; 17: 1173086, 2023.
Article in English | MEDLINE | ID: mdl-37469605

ABSTRACT

Background: Schwann cells acquire a repair phenotype upon peripheral nerve injury (PNI), generating an optimal microenvironment that drives nerve repair. Multiple microRNAs (miRNAs) show differential expression in the damaged peripheral nerve, with critical regulatory functions in Schwann cell features. This study examined the time-dependent expression of miR-195-5p following PNI and demonstrated a marked dysregulation of miR-195-5p in the damaged sciatic nerve. Methods: CCK-8 and EdU assays were used to evaluate the effect of miR-195-5 on Schwann cell viability and proliferation. Schwann cell migration was tested using Transwell and wound healing assays. The miR-195-5p agomir injection experiment was used to evaluate the function of miR-195-5p in vivo. The potential regulators and effects of miR-195-5p were identified through bioinformatics evaluation. The relationship between miR-195-5p and its target was tested using double fluorescence reporter gene analysis. Results: In Schwann cells, high levels of miR-195-5p decreased viability and proliferation, while suppressed levels had the opposite effects. However, elevated miR-195-5p promoted Schwann cell migration determined by the Transwell and wound healing assays. In vivo injection of miR-195-5p agomir into rat sciatic nerves promote axon elongation after peripheral nerve injury by affecting Schwann cell distribution and myelin preservation. Bioinformatic assessment further revealed potential regulators and effectors for miR-195-5p, which were utilized to build a miR-195-5p-centered competing endogenous RNA network. Furthermore, miR-195-5p directly targeted cAMP response element binding protein-like 2 (Crebl2) mRNA via its 3'-untranslated region (3'-UTR) and downregulated Crebl2. Mechanistically, miR-195-5p modulated Schwann cell functions by repressing Crebl2. Conclusion: The above findings suggested a vital role for miR-195-5p/Crebl2 in the regulation of Schwann cell phenotype after sciatic nerve damage, which may contribute to peripheral nerve regeneration.

10.
iScience ; 26(8): 107264, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37502257

ABSTRACT

Spinal motor neurons, the distinctive neurons of the central nervous system, extend into the peripheral nervous system and have outstanding ability of axon regeneration after injury. Here, we explored the heterogeneity of spinal ventral horn cells after rat sciatic nerve crush via single-nuclei RNA sequencing. Interestingly, regeneration mainly occurred in a Sncg+ and Anxa2+ motor neuron subtype (MN2) surrounded by a newly emerged microglia subtype (Mg6) after injury. Subsequently, microglia depletion slowed down the regeneration of sciatic nerve. OPCs were also involved into the regeneration process. Knockdown of Cacna2d2 in vitro and systemic blocking of Cacna2d2 in vivo improved the axon growth ability, hinting us the importance of Ca2+. Ultimately, we proposed three possible phases of motor neuron axon regeneration: preparation stage, early regeneration stage, and regeneration stage. Taken together, our study provided a resource for deciphering the underlying mechanism of motor neuron axon regeneration in a single cell dimension.

11.
J Adv Res ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37499939

ABSTRACT

INTRODUCTION: Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia. However, the regulatory roles of circRNAs in VSMC autophagy remain unclear. OBJECTIVES: We aimed to identify circRNAs that are involved in VSMC autophagy-mediated neointimal hyperplasia, as well as elucidate the underlying mechanisms. METHODS: Dual-luciferase reporter gene assay was performed to validate two competing endogenous RNA axes, hsa_circ_0001402/miR-183-5p/FKBP prolyl isomerase like (FKBPL) and hsa_circ_0001402/miR-183-5p/beclin 1 (BECN1). Cell proliferation and migration analyses were employed to investigate the effects of hsa_circ_0001402, miR-183-5p, or FKBPL on VSMC proliferation and migration. Cell autophagy analysis was conducted to reveal the role of hsa_circ_0001402 or miR-183-5p on VSMC autophagy. The role of hsa_circ_0001402 or miR-183-5p on neointimal hyperplasia was evaluated using a mouse model of common carotid artery ligation. RESULTS: Hsa_circ_0001402 acted as a sponge for miR-183-5p, leading to the suppression of miR-183-5p expression. Through direct interaction with the coding sequence (CDS) of FKBPL, miR-183-5p promoted VSMC proliferation and migration by decreasing FKBPL levels. Besides, miR-183-5p reduced BECN1 levels by targeting the 3'-untranslated region (UTR) of BECN1, thus inhibiting VSMC autophagy. By acting as a miR-183-5p sponge, overexpression of hsa_circ_0001402 increased FKBPL levels to inhibit VSMC proliferation and migration, while simultaneously elevating BECN1 levels to activate VSMC autophagy, thereby alleviating neointimal hyperplasia. CONCLUSION: Hsa_circ_0001402, acting as a miR-183-5p sponge, increases FKBPL levels to inhibit VSMC proliferation and migration, while enhancing BECN1 levels to activate VSMC autophagy, thus alleviating neointimal hyperplasia. The hsa_circ_0001402/miR-183-5p/FKBPL axis and hsa_circ_0001402/miR-183-5p/BECN1 axis may offer potential therapeutic targets for neointimal hyperplasia.

12.
J Dairy Sci ; 106(8): 5626-5635, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37291038

ABSTRACT

Fatty liver is a major metabolic disorder of high-producing dairy cows during the transition period. In nonruminants, it is well established that insulin-induced gene 1 (INSIG1) plays a crucial role in regulating hepatic lipogenesis by controlling the anchoring of sterol regulatory element-binding protein 1 (SREBP-1) on the endoplasmic reticulum along with SREBP cleavage-activating protein (SCAP). Whether the INSIG1-SCAP-SREBP-1c transport axis is affected in cows experiencing fatty liver is unknown. Thus, the aim of this study was to investigate the potential role of INSIG1-SCAP-SREBP-1c axis in the progression of fatty liver in dairy cows. For in vivo experiments, 24 dairy cows at the start of their fourth lactation (median; range 3-5) and 8 d in milk (median; range 4-12 d) were selected into a healthy group [n = 12; triglyceride (TG) content <1%] and a severe fatty liver group (n = 12; TG content >10%) according to their hepatic TG content. Blood samples were collected for detecting serum concentrations of free fatty acids, ß-hydroxybutyrate, and glucose. Compared with healthy cows, cows with severe fatty liver had higher serum concentrations of ß-hydroxybutyrate and free fatty acids and lower concentration of glucose. Liver biopsies were used to detect the status of INSIG1-SCAP-SREBP-1c axis, and the mRNA expression of SREBP-1c-target lipogenic genes acetyl-CoA carboxylase α (ACACA), fatty acid synthase (FASN), and diacylglycerol acyltransferase 1 (DGAT1). Cows with severe fatty liver had lower protein expression of INSIG1 in the hepatocyte endoplasmic reticulum fraction, greater protein expression of SCAP and precursor SREBP-1c in the hepatocyte Golgi fraction, and greater protein expression of mature SREBP-1c in the hepatocyte nuclear fraction. In addition, the mRNA expression of SREBP-1c-target lipogenic genes ACACA, FASN, and DGAT1 was greater in the liver of dairy cows with severe fatty liver. In vitro experiments were conducted on hepatocytes isolated from 5 healthy 1-d-old female Holstein calves, and hepatocytes from each calf were run independently. First, hepatocytes were treated with 0, 200, or 400 µM palmitic acid (PA) for 12 h. Exogenous PA treatment decreased INSIG1 protein abundance, enhanced the endoplasmic reticulum to Golgi export of SCAP-precursor SREBP-1c complex and the nuclear translocation of mature SREBP-1c, all of which was associated with increased transcriptional activation of lipogenic genes and TG synthesis. Second, hepatocytes were transfected with INSIG1-overexpressing adenovirus for 48 h and treated with 400 µM PA 12 h before the end of transfection. Overexpressing INSIG1 inhibited PA-induced SREBP-1c processing, upregulation of lipogenic genes, and TG synthesis in hepatocytes. Overall, the present in vivo and in vitro results indicated that the low abundance of INSIG1 contributed to SREBP-1c processing and hepatic steatosis in dairy cows. Thus, the INSIG1-SCAP-SREBP-1c axis may be a novel target for treatment of fatty liver in dairy cows.


Subject(s)
Cattle Diseases , Fatty Liver , Cattle , Animals , Female , Sterol Regulatory Element Binding Protein 1/metabolism , Fatty Acids, Nonesterified , 3-Hydroxybutyric Acid , Fatty Liver/metabolism , Fatty Liver/veterinary , Liver/metabolism , Hepatocytes/metabolism , Triglycerides/metabolism , Insulin/metabolism , RNA, Messenger/metabolism , Glucose/metabolism , Cattle Diseases/metabolism
13.
Acta Pharm Sin B ; 13(4): 1616-1630, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37139424

ABSTRACT

Acetaminophen (APAP) overdose is a major cause of liver injury. Neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ubiquitin ligase that has been implicated in the pathogenesis of numerous liver diseases; however, its role in APAP-induced liver injury (AILI) is unclear. Thus, this study aimed to investigate the role of NEDD4-1 in the pathogenesis of AILI. We found that NEDD4-1 was dramatically downregulated in response to APAP treatment in mouse livers and isolated mouse hepatocytes. Hepatocyte-specific NEDD4-1 knockout exacerbated APAP-induced mitochondrial damage and the resultant hepatocyte necrosis and liver injury, while hepatocyte-specific NEDD4-1 overexpression mitigated these pathological events both in vivo and in vitro. Additionally, hepatocyte NEDD4-1 deficiency led to marked accumulation of voltage-dependent anion channel 1 (VDAC1) and increased VDAC1 oligomerization. Furthermore, VDAC1 knockdown alleviated AILI and weakened the exacerbation of AILI caused by hepatocyte NEDD4-1 deficiency. Mechanistically, NEDD4-1 was found to interact with the PPTY motif of VDAC1 through its WW domain and regulate K48-linked ubiquitination and degradation of VDAC1. Our present study indicates that NEDD4-1 is a suppressor of AILI and functions by regulating the degradation of VDAC1.

14.
Sensors (Basel) ; 23(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37112289

ABSTRACT

This paper presents an autonomous unmanned-aerial-vehicle (UAV) tracking system based on an improved long and short-term memory (LSTM) Kalman filter (KF) model. The system can estimate the three-dimensional (3D) attitude and precisely track the target object without manual intervention. Specifically, the YOLOX algorithm is employed to track and recognize the target object, which is then combined with the improved KF model for precise tracking and recognition. In the LSTM-KF model, three different LSTM networks (f, Q, and R) are adopted to model a nonlinear transfer function to enable the model to learn rich and dynamic Kalman components from the data. The experimental results disclose that the improved LSTM-KF model exhibits higher recognition accuracy than the standard LSTM and the independent KF model. It verifies the robustness, effectiveness, and reliability of the autonomous UAV tracking system based on the improved LSTM-KF model in object recognition and tracking and 3D attitude estimation.

15.
Nanomicro Lett ; 15(1): 73, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36971905

ABSTRACT

Lithium-sulfur (Li-S) system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice. However, the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into all-solid-state thin-film batteries, leading to inexperience in fabricating all-solid-state thin-film Li-S batteries (TFLSBs). Herein, for the first time, TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S (VGs-Li2S) composite thin-film cathode, lithium-phosphorous-oxynitride (LiPON) thin-film solid electrolyte, and Li metal anode. Fundamentally eliminating Li-polysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an "unlimited Li" reservoir, which exhibits excellent long-term cycling stability with a capacity retention of 81% for 3,000 cycles, and an exceptional high temperature tolerance up to 60 °C. More impressively, VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%. Collectively, this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries.

16.
Article in English | MEDLINE | ID: mdl-36753313

ABSTRACT

With the advantages of low cost, high safety, and environmental friendliness, quasi-solid-state zinc-ion microbatteries (ZIMBs) have received widespread attention in the field of flexible wearable devices and on-chip integratable energy storage. However, hysteresis Zn-ion transport kinetics and inhomogeneous growth of the zinc anode result in the poor capacity reversibility and cycling stability. Herein, a quasi-solid-state planar zinc-ion cell was developed by employing a vertical graphene (VG) film as an effective conductive modification layer for both the cathode and anode. The VG distinctly induces uniform Zn deposition/stripping, accelerates the charge transport, and enhances the adhesion between the active materials and current collectors. As a result, planar Zn@VG//MnO2@VG exhibits a high areal capacity of 159 µAh cm-2, a remarkably high areal energy/power density of 201.5 µWh cm-2/67.16 µW cm-2, and a high capacity retention of 95.6% at a bending angle of 180°. The proposed facile strategy for electrode modification provides a new insight into the design of high-performance flexible and planar ZIMBs.

17.
Surg Endosc ; 37(5): 3380-3397, 2023 05.
Article in English | MEDLINE | ID: mdl-36627536

ABSTRACT

BACKGROUND: Pancreaticoduodenectomy is the first choice surgical intervention for the radical treatment of pancreatic tumors. However, an anastomotic fistula is a common complication after pancreaticoduodenectomy with a high mortality rate. With the development of minimally invasive surgery, open pancreaticoduodenectomy (OPD), laparoscopic pancreaticoduodenectomy (LPD), and robotic pancreaticoduodenectomy (RPD) are gaining interest. But the impact of these surgical methods on the risk of anastomosis has not been confirmed. Therefore, we aimed to integrate relevant clinical studies and explore the effects of these three surgical methods on the occurrence of anastomotic fistula after pancreaticoduodenectomy. METHODS: A systematic literature search was conducted for studies reporting the RPD, LPD, and OPD. Network meta-analysis of postoperative anastomotic fistula (Pancreatic fistula, biliary leakage, gastrointestinal fistula) was performed. RESULTS: Sixty-five studies including 10,026 patients were included in the network meta-analysis. The rank of risk probability of pancreatic fistula for RPD (0.00) was better than LPD (0.37) and OPD (0.62). Thus, the analysis suggests the rank of risk of the postoperative pancreatic fistula for RPD, LPD, and OPD. The rank of risk probability for biliary leakage was similar for RPD (0.15) and LPD (0.15), and both were better than OPD (0.68). CONCLUSIONS: This network meta-analysis provided ranking for three different types of pancreaticoduodenectomy. The RPD and LPD can effectively improve the quality of surgery and are safe as well as feasible for OPD.


Subject(s)
Laparoscopy , Pancreatic Neoplasms , Robotic Surgical Procedures , Humans , Pancreaticoduodenectomy/adverse effects , Pancreaticoduodenectomy/methods , Pancreatic Fistula/etiology , Pancreatic Fistula/complications , Network Meta-Analysis , Pancreatectomy/adverse effects , Pancreatic Neoplasms/pathology , Anastomosis, Surgical/adverse effects , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/surgery , Laparoscopy/methods , Retrospective Studies , Robotic Surgical Procedures/adverse effects , Length of Stay
18.
Neural Regen Res ; 18(7): 1584-1590, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36571366

ABSTRACT

Neurotrophic factors, particularly nerve growth factor, enhance neuronal regeneration. However, the in vivo applications of nerve growth factor are largely limited by its intrinsic disadvantages, such as its short biological half-life, its contribution to pain response, and its inability to cross the blood-brain barrier. Considering that let-7 (human miRNA) targets and regulates nerve growth factor, and that let-7 is a core regulator in peripheral nerve regeneration, we evaluated the possibilities of let-7 application in nerve repair. In this study, anti-let-7a was identified as the most suitable let-7 family molecule by analyses of endogenous expression and regulatory relationship, and functional screening. Let-7a antagomir demonstrated biosafety based on the results of in vivo safety assessments and it entered into the main cell types of the sciatic nerve, including Schwann cells, fibroblasts and macrophages. Use of hydrogel effectively achieved controlled, localized, and sustained delivery of let-7a antagomir. Finally, let-7a antagomir was integrated into chitosan conduit to construct a chitosan-hydrogel scaffold tissue-engineered nerve graft, which promoted nerve regeneration and functional recovery in a rat model of sciatic nerve transection. Our study provides an experimental basis for potential in vivo application of let-7a.

19.
Neurosci Bull ; 39(2): 213-244, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35788904

ABSTRACT

Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors - the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood-brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.


Subject(s)
Gliosis , Spinal Cord Injuries , Mice , Animals , Gliosis/metabolism , Gliosis/pathology , Cicatrix/etiology , Cicatrix/metabolism , Cicatrix/pathology , Astrocytes/metabolism , Spinal Cord/pathology , Fibrosis , Mammals , Receptors, G-Protein-Coupled
20.
Neurosci Lett ; 791: 136893, 2022 11 20.
Article in English | MEDLINE | ID: mdl-36191794

ABSTRACT

MicroRNAs (miRNAs) modulate Schwann cell phenotype. Here miR-328a-3p amounts after peripheral nerve damage were determined in injury stumps of the sciatic nerve in rats administered surgical crush. Quantitative real-time reverse transcription-polymerase chain reaction was performed to assess miR-328a-3p levels 0, 1, 4, 7 and 14 days post-sciatic nerve damage. The results showed miR-328a-3p was upregulated after nerve damage. CCK8 and EdU assays revealed elevated miR-328a-3p amounts suppressed Schwann cell viability and proliferation, respectively. Next, the migratory potential of cells was assessed by the Transwell chamber and wound healing assays. We found elevated miR-328a-3p amounts also suppressed Schwann cell migration. Conversely, low miR-328a-3p amounts promoted Schwann cell migration. The possible miR-328a-3p targets were predicted by bioinformatics. The 15 target genes retrieved provided insights into miR-328a-3p's effects on Schwann cells and expanded the understanding of miR-328a-3p's biological functions in the peripheral nervous system. Collectively, these findings revealed miR-328a-3p's effects on Schwann cells and provided further insights into the functions of miRNAs in peripheral nerves.


Subject(s)
MicroRNAs , Peripheral Nerve Injuries , Rats , Animals , Cell Proliferation , Schwann Cells/physiology , Cell Movement , MicroRNAs/genetics , Sciatic Nerve/injuries , Peripheral Nerve Injuries/genetics
SELECTION OF CITATIONS
SEARCH DETAIL