Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Front Pharmacol ; 15: 1444707, 2024.
Article in English | MEDLINE | ID: mdl-39323634

ABSTRACT

Background: Aumolertinib demonstrated superior progression-free survival (PFS) and a well-tolerated toxicity profile compared to gefitinib in front-line treatment of locally advanced or metastatic non-small cell lung cancer (NSCLC) in the AENEAS trial. However, patient-reported outcomes (PROs) of aumolertinib have not been published. Methods: In this real-world study, the efficacy was evaluated by Response Evaluation Criteria in Solid Tumors (RECIST) 1.0. PROs were evaluated using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 (QLQ-C30) and the EORTC Quality of Life lung cancer-specific module (QLQ-LC13) in advanced NSCLC patients receiving aumolertinib as initial therapy. Pre-specified key symptoms were cough, hemoptysis, dyspnea, sore mouth or tongue, dysphagia, hair loss, tingling in hands or feet, chest pain, arm or shoulder pain, and pain at other sites. Results: A total of 33 patients were included, 23 of whom had efficacy information up to January 2024. The median follow-up time was 264 days (interval: 36-491 days). The objective response rate and disease control rate were 65.2% and 91.3%, respectively. The EORTC QLQ-LC30 general health status scale showed that functional scales increased and symptom scales decreased during aumolertinib treatment. Symptom scales assessed by the EORTC QLQ-LC13 showed that improvements in cough, sore mouth or tongue, tingling in hands or feet, chest pain, arm or shoulder pain, and other pain sites were both clinically and statistically significant after 6 months of aumolertinib treatment (p < 0.05). Conclusion: In this real-world study, aumolertinib showed comparable disease control and objective response rates as reported in the AENEAS trial for advanced NSCLC patients with EGFR-sensitizing mutations. Aumolertinib treatment improved PROs, further supporting it in first-line clinical practice.

2.
Cancer Cell ; 42(9): 1598-1613.e4, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39255777

ABSTRACT

Stratification strategies for chemotherapy plus PD-1 inhibitors in advanced non-small-cell lung cancer (NSCLC) are critically demanded. We performed high-throughput panel-based deep next-generation sequencing and low-pass whole genome sequencing on prospectively collected circulating tumor DNA (ctDNA) specimens from 460 patients in the phase 3 CHOICE-01 study at different time points. We identified predictive markers for chemotherapy plus PD-1 inhibitor, including ctDNA status and genomic features such as blood-based tumor mutational burden, intratumor heterogeneity, and chromosomal instability. Furthermore, we established an integrated ctDNA-based stratification strategy, blood-based genomic immune subtypes (bGIS) scheme, to distinguish patients who benefit from the addition of PD-1 inhibitor to first-line chemotherapy. Moreover, we demonstrated potential applications for the dynamic monitoring of ctDNA. Overall, we proposed a potential therapeutic algorithm based on the ctDNA-based stratification strategy, shedding light on the individualized management of immune-chemotherapies for patients with advanced NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Immune Checkpoint Inhibitors , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/blood , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/blood , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Female , Male , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Mutation , High-Throughput Nucleotide Sequencing/methods
3.
J Thorac Oncol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39127176

ABSTRACT

INTRODUCTION: KRAS glycine-to-cysteine substitution at codon 12 (G12C) mutation is a well-recognized and increasingly promising therapeutic target with huge unmet clinical needs in NSCLC patients. IBI351 is a potent covalent and irreversible inhibitor of KRAS G12C. Here, we present the efficacy and safety of IBI351 from an open-label, single-arm, phase 2 pivotal study. METHODS: Eligible patients with NSCLC with KRAS G12C who failed standard therapy were enrolled. IBI351 was orally administered at a dose of 600 mg twice daily. The primary endpoint was confirmed objective response rate assessed by an independent radiological review committee (IRRC) as per Response Evaluation Criteria in Solid Tumors v1.1. Other endpoints were safety, IRRC-confirmed disease control rate, duration of response, progression-free survival (PFS), and overall survival. RESULTS: As of December 13, 2023, 116 patients were enrolled (Eastern Cooperative Oncology Group Performance Status 1: 91.4%; brain metastasis: 30.2%; prior treatments with both anti-PD-1 or anti-PD-L1 inhibitors and platinum-based chemotherapy: 84.5%). As per the IRRC assessment, the confirmed objective response rate was 49.1% (95% confidence interval [CI]: 39.7-58.6), and the disease control rate was 90.5% (95% CI: 83.7-95.2). The median duration of response was not reached whereas disease progression or death events occurred in 22 patients (38.6%), and the median PFS was 9.7 months (95% CI: 5.6-11.0). overall survival data was immature. Treatment-related adverse events (TRAEs) occurred in 107 patients (92.2%) whereas 48 patients (41.4%) had equal to or higher than grade three TRAEs. Common TRAEs were anemia (44.8%), increased alanine aminotransferase (28.4%), increased aspartate aminotransferase (27.6%), asthenia (26.7%) and presence of protein in urine (25.0%). TRAEs leading to treatment discontinuation occurred in nine patients (7.8%). In biomarker evaluable patients (n = 95), all patients had positive KRAS G12C in tissue whereas 72 patients were blood-positive and 23 were blood-negative for KRAS G12C. Patients with KRAS G12C in both blood and tissue had higher tumor burden at baseline (p < 0.05) and worse PFS (p < 0.05). Tumor mutation profiling identified tumor protein p53 (45.3%), serine/threonine kinase 11 (STK11) (30.5%), and kelch-like ECH-associated protein 1 (21.1%) as the most common genes co-mutated with KRAS G12C. Among 13 genes with mutation frequency equal to or higher than 5%, mutations of six genes (STK11, kelch-like ECH-associated protein 1, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma, DNA polymerase epsilon, SMAD family member 4, and BMP/retinoic acid-inducible neural-specific protein 3) were significantly associated with worse PFS (p < 0.05). Mutation in STK11 was also found to have a significant association with higher tumor burden at baseline and lower response rate (p < 0.05). CONCLUSIONS: IBI351 monotherapy demonstrated promising and sustained efficacy with manageable safety, supporting its potential as a new treatment option for KRAS G12C-mutant NSCLC.

4.
Inorg Chem ; 63(34): 15568-15573, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39102352

ABSTRACT

In this work, carbon-coated bimetallic tin-nickel selenide heterostructures loaded on reduced graphene oxide composites were prepared through a metal-organic framework-assisted strategy. The carbon coating mitigates the volume expansion and maintains the structural stability, while the introduction of reduced graphene oxide and heterojunction enhances electrical conductivity and reaction kinetics, thereby together contributing to the enhanced lithium-ion storage performance. As expected, the optimal material delivers excellent lithium-ion storage performance in terms of a high reversible capacity of 1033.4 mAh g-1 at 0.2 A g-1, outstanding rate capability, and long-term cyclability with the capacity of 726.2 mAh g-1 after 500 cycles at 1.0 A g-1 and 452.4 mAh g-1 after 1000 cycles at 2.0 A g-1. Furthermore, the electrochemical reaction mechanism of the composite is analyzed.

5.
Front Microbiol ; 15: 1433724, 2024.
Article in English | MEDLINE | ID: mdl-39021631

ABSTRACT

Microplastics (MPs) have been widely found in the environment and have exerted non-negligible impacts on the environment and human health. Extensive research has shown that MPs can act as carriers for viruses and interacts with them in various ways. Whether MPs influence the persistence, transmission and infectivity of virus has attracted global concern in the context of increasing MPs contamination. This review paper provides an overview of the current state of knowledge regarding the interactions between MPs and viruses in aquatic environments. Latest progress and research trends in this field are summarized based on literature analysis. Additionally, we discuss the potential risks posed by microplastic-associated viruses to human health and the environmental safety, highlighting that MPs can affect viral transmission and infectivity through various pathways. Finally, we underscores the need for further research to address key knowledge gaps, such as elucidating synergistic effects between MPs and viruses, understanding interactions under real environmental conditions, and exploring the role of biofilms in virus-MPs interactions. This review aims to contribute to a deeper understanding on the transmission of viruses in the context of increasing MPs pollution in water, and promote actions to reduce the potential risks.

6.
Chin Med J (Engl) ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39028115

ABSTRACT

BACKGROUND: T-cell-mediated immunity is crucial for the effective clearance of viral infection, but the T-cell-mediated immune responses that are induced by booster doses of inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in people living with human immunodeficiency virus (PLWH) remain unclear. METHODS: Forty-five PLWH who had received antiretroviral therapy (ART) for more than two years and 29 healthy controls (HCs) at Beijing Youan Hospital were enrolled to assess the dynamic changes in T-cell responses between the day before the third vaccine dose (week 0) and 4 or 12 weeks (week 4 or week 12) after receiving the third dose of inactivated SARS-CoV-2 vaccine. Flow cytometry, enzyme-linked immunospot (ELISpot), and multiplex cytokines profiling were used to assess T-cell responses at the three timepoints in this study. RESULTS: The results of the ELISpot and activation-induced marker (AIM) assays showed that SARS-CoV-2-specific T-cell responses were increased in both PLWH and HCs after the third dose of the inactivated SARS-CoV-2 vaccine, and a similar magnitude of immune response was induced against the Omicron (B.1.1.529) variant compared to the wild-type strain. In detail, spike-specific T-cell responses (measured by the ELISpot assay for interferon γ [IFN-γ] release) in both PLWH and HCs significantly increased in week 4, and the spike-specific T-cell responses in HCs were significantly stronger than those in PLWH 4 weeks after the third vaccination. In the AIM assay, spike-specific CD4+ T-cell responses peaked in both PLWH and HCs in week 12. Additionally, significantly higher spike-specific CD8+ T-cell responses were induced in PLWH than in HCs in week 12. In PLWH, the release of the cytokines interleukin-2 (IL-2), tumour necrosis factor-alpha (TNF-α), and IL-22 by peripheral blood mononuclear cells (PBMCs) that were stimulated with spike peptides increased in week 12. In addition, the levels of IL-4 and IL-5 were higher in PLWH than in HCs in week 12. Interestingly, the magnitude of SARS-CoV-2-specific T-cell responses in PLWH was negatively associated with the extent of CD8+ T-cell activation and exhaustion. In addition, positive correlations were observed between the magnitude of spike-specific T-cell responses (determined by measuring IFN-γ release by ELISpot) and the amounts of IL-4, IL-5, IL-2 and IL-17F. CONCLUSIONS: Our findings suggested that SARS-CoV-2-specific T-cell responses could be enhanced by the booster dose of inactivated COVID-19 vaccines and further illustrate the importance of additional vaccination for PLWH.

7.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3302-3311, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041093

ABSTRACT

This study aims to investigate the mechanism of Mailuo Shutong Pills(MLST) on posterior limb muscle swelling caused by femoral fracture(SCFF) through network pharmacology and animal experiments. The plasma components of MLST were analyzed by LC-MS, and the target and signal pathway of SCFF were predicted by network pharmacology and verified by molecular docking. SCFF model rats were established through animal experiments, and different doses of MLST were administered to detect the degree of limb swelling. Hematoxylin-eosin(HE) staining was used to observe pathological changes in muscle tissue, and interleukin-6(IL-6), interleukin-1ß(interleukin-1ß), and tumor necrosis factor-α(TNF-α) in peripheral blood were determined by enzyme-linked immunosorbent assay(ELISA). The expression of relevant signaling pathways was measured by Western blot. Network pharmacological results showed that MLST and SCFF had a total of 153 disease targets, and the key targets were IL-6, TNF, etc., involving mitogen-activated protein kinase(MAPK) signaling pathway, phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT) signaling pathway, etc. The binding energies of the main components and key targets were lower than-7.0 kcal·mol~(-1), indicating that the network analysis results were reliable. The results of animal experiments showed that MLST could reduce the swelling degree and pathological damage of the posterior limb muscles of SCFF rats compared with the model group. ELISA results showed that MLST could reduce the levels of IL-6, IL-1ß, and TNF-α in the serum of SCFF rats. Western blot results showed that MLST can reduce the expression of p-AKT, p-PI3K, p-NF-κB, p-p38 MAPK, and p-ERK in SCFF rats. MLST may reduce the content of inflammatory factors in serum by regulating the expression of PI3K/AKT and MAPK-related signaling pathway protein and improving posterior limb muscle SCFF in rats.


Subject(s)
Drugs, Chinese Herbal , Femoral Fractures , Network Pharmacology , Animals , Rats , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Male , Femoral Fractures/drug therapy , Femoral Fractures/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Rats, Sprague-Dawley , Signal Transduction/drug effects , Molecular Docking Simulation , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159537, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032627

ABSTRACT

Mucor circinelloides has been exploited as model filamentous fungi for studies of genetic manipulation of lipogenesis. It is widely recognized that lipid accumulation is increased when there is a lack of nitrogen source in oleaginous microorganism. Nitrogen metabolism in filamentous fungi is a complex process that can be regulated by the global nitrogen regulator AreA. In this study, we cultivated the areA-knockout and -overexpression strains obtained in our previous study, using 20 different nitrogen sources. It emerged that the disruption of AreA in M. circinelloides reduced its sensitivity to nitrogen availability, resulting in increased lipid synthesis. Specially, the areA-knockout strain was unable to fully utilize many nitrogen sources but the ammonium and glutamate. We continued to investigate lipid production at different molar C/N ratios using glucose as sole carbon source and ammonium sulfate as sole nitrogen source, of which the high C/N ratios activate high lipid accumulation. By comparing the experimental results with transcriptional analysis, we were able to identify the optimal process conditions suitable for lipid accumulation and potential targets for future metabolic engineering.


Subject(s)
Carbon , Fungal Proteins , Mucor , Nitrogen , Mucor/metabolism , Mucor/genetics , Nitrogen/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Carbon/metabolism , Gene Expression Regulation, Fungal , Lipid Metabolism/genetics , Lipids/biosynthesis
9.
Front Plant Sci ; 15: 1396634, 2024.
Article in English | MEDLINE | ID: mdl-38993940

ABSTRACT

Ubiquitination is a highly conserved and dynamic post-translational modification in which protein substrates are modified by ubiquitin to influence their activity, localization, or stability. Deubiquitination enzymes (DUBs) counter ubiquitin signaling by removing ubiquitin from the substrates. Ubiquitin-specific proteases (UBPs), the largest subfamily of DUBs, are conserved in plants, serving diverse functions across various cellular processes, although members within the same group often exhibit functional redundancy. Here, we briefly review recent advances in understanding the biological roles of UBPs, particularly the molecular mechanism by which UBPs regulate plant development and growth, morphogenesis, and stress response, which sheds light on the mechanistic roles of deubiquitination in plants.

10.
Cancer Gene Ther ; 31(8): 1135-1150, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38926596

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive primary brain cancer; angiogenesis and immunosuppression exacerbate GBM progression. COUP-TFII demonstrates pro-angiogenesis activity; however, its role in glioma progression remains unclear. This study revealed that COUP-TFII promotes angiogenesis in gliomas by inducing transdifferentiation of glioma cells into endothelial-like cells. Mechanistic investigation suggested that COUP-TFII as a transcription factor exerts its function via binding to the promoter of TXNIP. Interestingly, COUP-TFII knockdown attenuated tumorigenesis and tumor progression in an immunocompetent mouse model but promoted tumor progression in an immuno-deficient mouse model. As an explanation, repression of COUP-TFII induces cellular senescence and activates immune surveillance in glioma cells in vitro and in vivo. In addition, we used heparin-polyethyleneimine (HPEI) nanoparticles to deliver COUP-TFII shRNA, which regulated tumor angiogenesis and immunosuppression in an in situ GBM mouse model. This study provides a novel strategy and potential therapeutic targets to treat GBM.


Subject(s)
Disease Models, Animal , Genetic Therapy , Glioblastoma , Neovascularization, Pathologic , Animals , Glioblastoma/therapy , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/immunology , Mice , Humans , Genetic Therapy/methods , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/therapy , COUP Transcription Factor II/genetics , COUP Transcription Factor II/metabolism , Brain Neoplasms/therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Cell Line, Tumor , Nanoparticles/chemistry , Immunosuppression Therapy/methods
11.
EClinicalMedicine ; 72: 102623, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800802

ABSTRACT

Background: In ORIENT-15 study, sintilimab plus chemotherapy demonstrated significant improvement on overall survival (OS) versus placebo plus chemotherapy in first-line treatment of advanced esophageal squamous cell carcinoma (ESCC). Here, we report effect of sintilimab plus chemotherapy on health-related quality of life (HRQoL) in patients with advanced ESCC. Methods: From December 14, 2018 to August 28, 2022, HRQoL was evaluated in all randomized patients using European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Core 30 items (QLQ-C30), EORTC Quality of Life Questionnaire Oesophageal Cancer Module 18 items (QLQ-OES18), and visual analogue scale (VAS) of the EuroQol five-dimensional five-level questionnaire (EQ-5D-5L). Mean scores of each scale were described by treatment group through week 60. Least-squares mean (LSM) score change from baseline through week 24 were analyzed using the mixed-model repeated-measures method. Time to the first onset of deterioration (TTD) and OS for each scale were estimated. Clinical Trials Registration: NCT03748134. Findings: As of August 28, 2022, 689 of 690 enrolled patients were assessed for HRQoL analysis (sintilimab group: 340, placebo group: 349). Median follow-up was 32.2 months. Differences in LSM favored sintilimab over placebo for QLQ-C30 social functioning (LSM difference: 3.06, 95% CI: 0.55 to 5.57; P = 0.0170), pain (-2.24, 95% CI: -4.30 to -0.17; P = 0.0337), fatigue (-2.24, 95% CI: -4.46 to -0.02; P = 0.0479), constipation (-3.27, 95% CI -5.49 to -1.05; P = 0.0039), QLQ-OES18 pain (-1.77, 95% CI -3.11 to -0.43; P = 0.0097), trouble swallowing saliva (-2.09, 95% CI: -3.77 to -0.42; P = 0.0146), and choked when swallowing (-3.23, 95% CI: -5.60 to -0.86; P = 0.0076). TTD favored sintilimab over placebo for QLQ-OES18 dysphagia (Hazard ratio [HR]: 0.76, 95% CI: 0.61-0.94, P = 0.0104), and trouble swallowing saliva (HR: 0.48, 95% CI: 0.35-0.67, P < 0.0001). Improved OS were observed in patients with better performance in several functioning and symptom scales of QLQ-C30 and QLQ-QES18. Interpretation: The statistically significant differences of several HRQoL scales and improvements in delayed deterioration observed in our study further support the use of sintilimab plus chemotherapy as first-line treatment for advanced ESCC. Funding: This study was funded by Innovent Biologics and was co-funded by Eli Lilly.

12.
Thorac Cancer ; 15(18): 1419-1428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38736300

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) are a specific subpopulation of cancer cells with the ability of self-renewal, infinite proliferation, multidifferentiation and tumorigenicity, and play critical roles in cancer progression and treatment resistance. CSCs are tightly regulated by the tumor microenvironment, such as hypoxia; however, how hypoxia regulates CSCs in non-small cell lung cancer (NSCLC) remains unclear. METHODS: The proportion of ALDHhi cells was examined using the Aldefluor assay. Tankyrase inhibitor XAV939 and siRNA were used to inhibit ß-catenin while pcDNA3-ß-catenin (S33Y) plasmid enhanced the expression of ß-catenin. Western blot was administered for protein detection. The mRNA expression was measured by quantitative real-time PCR. RESULTS: We found that hypoxia led to an increase in the proportion of ALDHhi cells in lung squamous carcinoma (LUSC) H520 cells, while causing a decrease in the ALDHhi cell proportion in lung adenocarcinoma (LUAD) A549 cells. Similarly, ß-catenin expression was upregulated in H520 cells but downregulated in A549 cells upon exposure to hypoxia. Mechanically, the proportion of ALDHhi cells in both cell lines was decreased by ß-catenin inhibitor or siRNA knockdown, whereas increased after ß-catenin overexpression. Furthermore, hypoxia treatment suppressed E-cadherin expression in H520 cells and enhanced N-cadherin and ß-catenin expression, while this effect was completely opposite in A549 cells. CONCLUSION: The hypoxia-EMT-ß-catenin axis functions as an important regulator for the proportion of CSCs in NSCLC and could potentially be explored as therapeutic targets in the future.


Subject(s)
Lung Neoplasms , Wnt Signaling Pathway , beta Catenin , Humans , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , beta Catenin/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Hypoxia , Cell Proliferation , Gene Expression Regulation, Neoplastic , A549 Cells
13.
Bioresour Technol ; 398: 130540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452954

ABSTRACT

This study aimed to improve the lipid and biomass yields of Mucor circinelloides WJ11 by implementing four different fed-batch fermentation strategies, varied in time and glucose concentration (S1-S4). The S1 fermentation strategy yielded the highest biomass, lipid, and fatty acid content (22 ± 0.7 g/L, 53 ± 1.2 %, and 28 ± 1.6 %) after 120 and 144 h, respectively. The γ-linolenic acid titer of 0.75 ± 0.0 g/L was greatest in S3 after 48 h. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze the transcription of key genes involved in lipid accumulation. The glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase genes showed increased expression levels. Fourier-transform infrared (FTIR) spectroscopy was used to analyze the biochemical profile during fermentation strategies. Optimal abiotic factors for production efficiency included pH 6.5, 25-26 °C, 15 % (v/v) inoculum, 500 rpm, 20 %-30 % dissolved oxygen, and 120 h fermentation. Glucose co-feeding offers valuable insights to develop effective fermentation strategies for lipid production.


Subject(s)
Fatty Acids , Mucor , Fermentation , Biomass , Mucor/metabolism , Fatty Acids/metabolism , Glucose/metabolism
14.
Microbiol Spectr ; 12(4): e0424723, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38415658

ABSTRACT

Cutaneous candidiasis, caused by Candida albicans, is a severe and frustrating condition, and finding effective treatments can be challenging. Therefore, the development of farnesol-loaded nanoparticles is an exciting breakthrough. Ethosomes are a novel transdermal drug delivery carrier that incorporates a certain concentration (10-45%) of alcohols into lipid vesicles, resulting in improved permeability and encapsulation rates compared to conventional liposomes. Farnesol is a quorum-sensing molecule involved in morphogenesis regulation in C. albicans, and these ethosomes offer a promising new approach to treating this common fungal infection. This study develops the formulation of farnesol-loaded ethosomes (farnesol-ethosomes) and assesses applications in treating cutaneous candidiasis induced by C. albicans in vitro and in vivo. Farnesol-ethosomes were successfully developed by ethanol injection method. Therapeutic properties of farnesol-ethosomes, such as particle size, zeta potential, and morphology, were well characterized. According to the results, farnesol-ethosomes demonstrated an increased inhibition effect on cells' growth and biofilm formation in C. albicans. In Animal infection models, treating farnesol-ethosomes by transdermal administration effectively relieved symptoms caused by cutaneous candidiasis and reduced fungal burdens in quantity. We also observed that ethosomes significantly enhanced drug delivery efficacy in vitro and in vivo. These results indicate that farnesol-ethosomes can provide future promising roles in curing cutaneous candidiasis. IMPORTANCE: Cutaneous candidiasis attributed to Candida infection is a prevalent condition that impacts individuals of all age groups. As a type of microbial community, biofilms confer benefits to host infections and mitigate the clinical effects of antifungal treatments. In C. albicans, the yeast-to-hypha transition and biofilm formation are effectively suppressed by farnesol through its modulation of multiple signaling pathway. However, the characteristics of farnesol such as hydrophobicity, volatility, degradability, and instability in various conditions can impose limitations on its effectiveness. Nanotechnology holds the potential to enhance the efficiency and utilization of this molecule. Treatment of farnesol-ethosomes by transdermal administration demonstrated a very remarkable therapeutic effect against C. albicans in infection model of cutaneous candidiasis in mice. Many patients suffering fungal skin infection will benefit from this study.


Subject(s)
Candida albicans , Candidiasis , Humans , Animals , Mice , Farnesol/pharmacology , Farnesol/metabolism , Farnesol/therapeutic use , Administration, Cutaneous , Candidiasis/drug therapy , Candidiasis/microbiology , Antifungal Agents/pharmacology , Biofilms
15.
Food Chem ; 445: 138781, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38401312

ABSTRACT

Meat adulteration has brought economic losses, health risks, and religious concerns, making it a pressing global issue. Herein, combining the high amplification efficiency of polymerase chain reaction (PCR) and the accurate recognition of CRISPR/Cas12, a sensitive and reliable electrochemiluminescence (ECL) biosensor was developed for the detection of pufferfish authenticity using NiCo2O4 NCs@Au-ABEI as nanoemitters. In the presence of target DNA, the trans-cleavage activity of CRISPR/Cas12a is activated upon specific recognition by crRNA, and then it cleaves dopamine-modified single stranded DNA (ssDNA-DA), triggering the ECL signal from the "off" to "on" state. However, without target DNA, the trans-cleavage activity of CRISPR/Cas12a is silenced. By rationally designing corresponding primers and crRNA, the biosensor was applied to specific identification of four species of pufferfish. Furthermore, as low as 0.1 % (w/w) adulterate pufferfish in mixture samples could be detected. Overall, this work provides a simple, low-cost and sensitive approach to trace pufferfish adulteration.


Subject(s)
Biosensing Techniques , Tetraodontiformes , Animals , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , DNA Primers , DNA, Single-Stranded , Tetraodontiformes/genetics
16.
Sci Total Environ ; 921: 171154, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387568

ABSTRACT

High-performance flexible semiconductor material can be used as an excellent multifunctional matrix for in-situ ultrasensitive surface-enhanced Raman scattering (SERS) detection and synchronous photocatalytic degradation of antibiotic residues in aquatic ecosystem. Here, a calcium-doped TiO2 flexible matrix with double defects (surface oxygen vacancy defect and Ti3+ energy level defect) was developed by its "in-situ one-step" hydrothermal synthesis on cotton fabric for the above purposes. Due to the joint contribution of double defects, a multi-channel charge transfer mode and a high-efficiency carrier separation are achieved, which endows flexible cotton fabric/Ca-doped TiO2 (Cot/Ca-TiO2) substrate with the greatly boosted SERS effect for in-situ detection of antibiotic residues on fish body surface and in fishpond water by a simple wiping or dipping sampling method, even for simultaneous identification of multi-component residues. The detection limits of three antibiotic residues (enrofloxacin, ciprofloxacin and enoxacin) are as low as 10-9 M, which are far lower than the EU standard. More meaningfully, the flexible Cot/Ca-TiO2 can be used as a multifunctional filter-membrane type photocatalyst for efficient on-site degradation of antibiotic residues in flowing fishpond water by a multi-grade photocatalysis means. Moreover, the flexible matrix exhibits good recyclability in both actual detection and photocatalysis.


Subject(s)
Anti-Bacterial Agents , Water , Animals , Anti-Bacterial Agents/analysis , Silver/chemistry , Ecosystem , Ciprofloxacin
17.
Front Microbiol ; 15: 1328321, 2024.
Article in English | MEDLINE | ID: mdl-38328422

ABSTRACT

The available resources of Streptomyces represent a valuable repository of bioactive natural products that warrant exploration. Streptomyces albulus is primarily utilized in the industrial synthesis of ε-poly-L-lysine (ε-PL). In this study, the NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) from Streptococcus mutans was heterologously expressed in S. albulus CICC11022, leading to elevated intracellular NADPH levels and reduced NADH and ATP concentrations. The resulting perturbation of S. albulus metabolism was comprehensively analyzed using transcriptomic and metabolomic methodologies. A decrease in production of ε-PL was observed. The expression of gapN significantly impacted on 23 gene clusters responsible for the biosynthesis of secondary metabolites. A comprehensive analysis revealed a total of 21 metabolites exhibiting elevated levels both intracellularly and extracellularly in the gapN expressing strain compared to those in the control strain. These findings underscore the potential of S. albulus to generate diverse bioactive natural products, thus offering valuable insights for the utilization of known Streptomyces resources through genetic manipulation.

18.
BMC Geriatr ; 24(1): 15, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177993

ABSTRACT

BACKGROUND: Subclinical hypothyroidism (SCH) is highly correlated with major depressive disorder (MDD). However, the prevalence and risk factors for SCH in older patients with MDD have rarely been reported in China. METHODS: This cross-sectional study included 266 older MDD patients with SCH was performed. Clinical and anthropometric, biochemical, and thyroid function data were collected. Depression, anxiety, and psychotic symptoms were assessed using the Hamilton Depression Scale, the Hamilton Anxiety Scale, and the Positive and Negative Syndrome Scale positive subscale, respectively. RESULTS: Among older patients with MDD, the prevalence of SCH was 64.7% (172/266). Compared to patients without SCH, older MDD patients with SCH had a longer disease course and higher TSH, A-TG, A-TPO, HDL-C, LDL-C, TC, FPG, and systolic pressure levels (all P ≤ 0.002). Furthermore, disease progression (OR 1.082, 95% CI 1.020-1.147, P = 0.009), A-TG (OR 1.005, 95% CI 1.001-1.009, P = 0.017), TC (OR 2.024, 95% CI 1.213-3.377, P = 0.007), FPG (OR 2.916, 95% CI 1.637-5.194, P < 0.001), systolic pressure (OR 1.053, 95% CI 1.008-1.100, P = 0.022) were independently associated with SCH, in older patients with MDD. CONCLUSIONS: Our findings suggest a high prevalence of SCH in older patients with MDD. Several demographic and clinical variables were independently associated with SCH in older patients with MDD.


Subject(s)
Depressive Disorder, Major , Hypothyroidism , Humans , Aged , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/epidemiology , Prevalence , Cross-Sectional Studies , Hypothyroidism/diagnosis , Hypothyroidism/epidemiology , Risk Factors
19.
Article in English | MEDLINE | ID: mdl-38185464

ABSTRACT

In the oleaginous fungus Mucor circinelloides, lipid accumulation is regulated by nitrogen metabolism, which is regulated by the areA gene, a member of the GATA zinc finger transporter family and a major regulator for nitrogen metabolism. However, the role of areA in lipid accumulation in this fungus has not been reported. In order to explore the regulatory effect of areA gene on nitrogen metabolism and lipid accumulation in M. circinelloides, we constructed areA gene knockout and overexpression strains. Then, the recombinant strains were cultured and their biochemical indexes were measured. Simultaneously, transcriptomic studies on the recombinant strains were conducted to infer the regulatory mechanism of areA. The results showed that the areA knockout strain accumulated more lipid, which is 42 % higher than the control. While the areA overexpressing strain obtained the higher biomass accumulation (23 g/L) and used up the nitrogen source in the medium earlier than the control strain and knockout strain. Transcriptome data analysis showed that nr and nit-6 genes related to nitrogen metabolism were up-regulated. And the expression levels of key genes acc and aclY were higher in the areA knockout strain than others, which was positively correlated with the increased lipid accumulation. In addition, in knockout strains, protein catabolism tended to provide substrates for the lipid production, and the expression levels of the related genes were also higher than others. These results indicated that the areA gene not only controls the transcription level of genes related to nitrogen metabolism but also affects lipid accumulation.


Subject(s)
Lipid Metabolism , Mucor , Lipid Metabolism/genetics , Mucor/genetics , Mucor/metabolism , Lipids , Nitrogen/metabolism
20.
Article in English | MEDLINE | ID: mdl-38052250

ABSTRACT

Lipid biosynthesis is a significant metabolic response to nitrogen starvation in oleaginous fungi. The oleaginous fungus Mucor circinelloides copes with nitrogen stress by degrading AMP through AMP deaminase (AMPD). However, the mechanism of AMPD in regulating lipogenesis remains largely unclear. To elucidate the mechanism of AMPD in lipid synthesis in this M. circinelloides, we identified two genes (ampd1 and ampd2) encoding AMPD and constructed an ampd double knockout mutant. The engineered M. circinelloides strain elevated cell growth and lipid accumulation, as well as the content of oleic acid (OA) and gamma-linolenic acid (GLA). In addition to the expected increase in transcription levels of genes associated with lipid and TAG synthesis, we observed suppression of lipid degradation and reduced amino acid biosynthesis. This suggested that the deletion of AMPD genes induces the redirection of carbon towards lipid synthesis pathways. Moreover, the pathways related to nitrogen metabolism, including nitrogen assimilation and purine metabolism (especially energy level), were also affected in order to maintain homeostasis. Further analysis discovered that the transcription factors (TFs) related to lipid accumulation were also regulated. This study provides new insights into lipid biosynthesis in M. circinelloides, indicating that the trigger for lipid accumulation is not entirely AMPD-dependent and suggest that there may be additional mechanisms involved in the initiation of lipogenesis.


Subject(s)
AMP Deaminase , Lipid Metabolism , Mucor , Lipid Metabolism/genetics , AMP Deaminase/genetics , AMP Deaminase/metabolism , Nitrogen/metabolism , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL