Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 522
Filter
1.
Nat Commun ; 15(1): 4972, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862491

ABSTRACT

Molecular doping plays an important role in controlling the carrier concentration of organic semiconductors. However, the introduction of dopant counterions often results in increased energetic disorder and traps due to the molecular packing disruption and Coulomb potential wells. To date, no general strategy has been proposed to reduce the counterion-induced structural and energetic disorder. Here, we demonstrate the critical role of non-covalent interactions (NCIs) between counterions and polymers. Employing a computer-aided approach, we identified the optimal counterions and discovered that NCIs determine their docking positions, which significantly affect the counterion-induced energetic disorder. With the optimal counterions, we successfully reduced the energetic disorder to levels even lower than that of the undoped polymer. As a result, we achieved a high n-doped electrical conductivity of over 200 S cm-1 and an eight-fold increase in the thermoelectric power factor. We found that the NCIs have substantial effects on doping efficiency, polymer backbone planarity, and Coulomb potential landscape. Our work not only provides a general strategy for identifying the most suitable counterions but also deepens our understanding of the counterion effects on doped polymeric semiconductors.

2.
Article in English | MEDLINE | ID: mdl-38896198

ABSTRACT

BACKGROUND: For patients with metastatic non-small cell lung cancer, timely molecular testing is essential to determine the appropriate course of therapy. Initial treatment with platinum chemotherapy and/or an immune checkpoint inhibitor (ICI) is the standard of care for patients without actionable genomic alterations. OBJECTIVE: We aimed to assess treatment patterns and clinical outcomes among patients with metastatic non-small cell lung cancer, no actionable genomic alterations, and with prior ICI and platinum-based chemotherapy in a community oncology setting. METHODS: This retrospective observational study examined electronic health records from adult patients with an initial metastatic non-small cell lung cancer diagnosis without actionable genomic alterations from 2017 to 2019. Patients had received a subsequent line of therapy (LOT) [index] after discontinuing platinum-based chemotherapy plus an ICI in the previous one or two LOTs. Patient demographics and clinical characteristics were analyzed descriptively. Clinical outcomes were evaluated using Kaplan-Meier analyses. RESULTS: Among the study population (n = 961), the most common index LOT regimens were non-platinum-based chemotherapies (57.3%), platinum-based chemotherapies (12.9%), ICI-based chemotherapies (12.7%), platinum + ICI-based chemotherapies (9.4%), and other (7.7%). The most common post-index LOT regimens were non-platinum based (61.2%), ICI based (15.3%), platinum based (10.7%), platinum + ICI based (3.2%), and other (2.5%). Median time to treatment discontinuation, time to next treatment, and overall survival were numerically longest with index LOT ICI-based regimens (6.5, 9.9, and 18.9 months, respectively) and shortest with platinum-based regimens (2.8, 5.3, and 8.0 months, respectively) and non-platinum-based regimens (2.6, 5.0, and 7.8 months, respectively). CONCLUSIONS: Among patients with metastatic non-small cell lung cancer without actionable genomic alterations previously treated with platinum + ICIs, non-platinum chemotherapy agents were most commonly prescribed in the index LOT. Clinical outcomes including time to treatment discontinuation, time to next treatment, and overall survival were short, highlighting the unmet need for more effective later-line treatments.

3.
J Obstet Gynaecol ; 44(1): 2362415, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38885114

ABSTRACT

BACKGROUND: Previous observational evidence has indicated the potential involvement of the gut microbiota (GM) in the development of endometriosis. However, the causal relationship of the association remains to be investigated. METHOD: Genome-wide association study (GWAS) data of GM was obtained from the MiBioGen consortium, and GWAS for endometriosis data was from the FinnGen consortium. Initially, a two-sample Mendelian randomisation (MR) analysis was performed to identify specific bacteria associated with endometriosis. Inverse variance-weighted (IVW) was used as the main MR analysis to infer causal relationships. The other four popular MR methods including MR-Egger regression, weighted mode, weighted median, and simple mode were used for secondary confirmation. Subsequently, these selected bacteria were employed as exposure to investigate their causal effects on six sub-types of endometriosis. Furthermore, reverse MR analysis was implemented to evaluate the reverse causal effects. Cochran's Q statistics was used to test the heterogeneity of instrumental variables (IVs); MR-Egger regression was used to test horizontal pleiotropy; MR-PRESSO and leave-one-out sensitivity analysis were applied to find significant outliers. RESULT: A total of 1131 single nucleotide polymorphisms (SNPs) were collected as IVs for 196 GM taxa with endometriosis as the outcome. We identified 12 causal relationships between endometriosis and GM taxa including 1 phylum, 3 families, 2 orders, and 6 genera (Rikenellaceae RC9 gut group, Eubacterium ruminantium group, Faecalibacterium, Peptococcus, Clostridium sensu stricto 1, and Ruminococcaceae UCG005). Utilizing the Bonferroni method, we identified phylum Cyanobacteria as the strongest associated GM taxa. Subsequently, 6 significant causal effects were uncovered between the 12 selected specific GM and 6 sub-types of endometriosis. Meanwhile, no reverse causal relationship was found. Further, no horizontal pleiotropy and no significant outliers were detected in the sensitive analysis. CONCLUSIONS: This MR analysis revealed significant causal effects between GM and endometriosis and phylum Cyanobacteria had the strongest association.


The imbalance of gut microbiota (GM) is suggested to be involved in the development of endometriosis while the causal relationship between GM and endometriosis remains undetermined. This two-sample mendelian randomisation analysis firstly demonstrated the potential association between GM and the risk of endometriosis including 6 sub-types. We revealed 12 causal relationships between endometriosis and GM taxa including 1 phylum, 3 families, 2 orders, and 6 genera while Phylum Cyanobacteria was the strongest associated GM taxa by using Bonferroni method. Meanwhile, we identified 6 significant causal effects between 12 selected specific GM and 6 sub-types of endometriosis. Meanwhile, the result from reverse MR analysis showed that there was no causal effect of endometriosis on the identified specific GM taxa. Thus, we revealed the causal relationship between GM and endometriosis. It is necessary to further study its potential mechanism, which may contribute to the prevention and treatment of Endometriosis.


Subject(s)
Endometriosis , Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Endometriosis/microbiology , Endometriosis/genetics , Humans , Female , Gastrointestinal Microbiome/genetics , Causality
4.
PLoS Pathog ; 20(6): e1011569, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900807

ABSTRACT

Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing, yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of NTD non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate NTD non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb prophylactic infusion did not suppress infectious viral titers in the lung as potently as neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection from SARS-CoV-2 infection. For therapeutic administration of antibodies, non-nAb effector functions contributed to virus suppression and lessening of lung discoloration, but the presence of neutralization was required for optimal protection from disease. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Immunoglobulin Fc Fragments , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , SARS-CoV-2/immunology , Mice , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Immunoglobulin Fc Fragments/immunology , Spike Glycoprotein, Coronavirus/immunology , Humans , Female , Protein Domains/immunology , Viral Load , Lung/virology , Lung/immunology , Lung/pathology
7.
Ann Clin Microbiol Antimicrob ; 23(1): 51, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877520

ABSTRACT

PURPOSE: In this prospective study, the diagnosis accuracy of nanopore sequencing-based Mycobacterium tuberculosis (MTB) detection was determined through examining bronchoalveolar lavage fluid (BALF) samples from pulmonary tuberculosis (PTB) -suspected patients. Compared the diagnostic performance of nanopore sequencing, mycobacterial growth indicator tube (MGIT) culture and Xpert MTB/rifampin resistance (MTB/RIF) assays. METHODS: Specimens collected from suspected PTB cases across China from September 2021 to April 2022 were tested then assay diagnostic accuracy rates were compared. RESULTS: Among the 111 suspected PTB cases that were ultimately diagnosed as PTB, the diagnostic rate of nanopore sequencing was statistically significant different from other assays (P < 0.05). Fleiss' kappa values of 0.219 and 0.303 indicated fair consistency levels between MTB detection results obtained using nanopore sequencing versus other assays, respectively. Respective PTB diagnostic sensitivity rates of MGIT culture, Xpert MTB/RIF and nanopore sequencing of 36.11%, 40.28% and 83.33% indicated superior sensitivity of nanopore sequencing. Analysis of area under the curve (AUC), Youden's index and accuracy values and the negative predictive value (NPV) indicated superior MTB detection performance for nanopore sequencing (with Xpert MTB/RIF ranking second), while the PTB diagnostic accuracy rate of nanopore sequencing exceeded corresponding rates of the other methods. CONCLUSIONS: In comparison with MGIT culture and Xpert MTB/RIF assays, BALF's nanopore sequencing provided superior MTB detection sensitivity and thus is suitable for testing of sputum-scarce suspected PTB cases. However, negative results obtained using these assays should be confirmed based on additional evidence before ruling out a PTB diagnosis.


Subject(s)
Bronchoalveolar Lavage Fluid , Mycobacterium tuberculosis , Nanopore Sequencing , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Prospective Studies , China , Nanopore Sequencing/methods , Male , Female , Bronchoalveolar Lavage Fluid/microbiology , Adult , Middle Aged , Sensitivity and Specificity , Sputum/microbiology , Aged , Young Adult
8.
Adv Mater ; : e2403411, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804620

ABSTRACT

Understanding psychology is an important task in modern society which helps predict human behavior and provide feedback accordingly. Monitoring of weak psychological and emotional changes requires bioelectronic devices to be stretchable and compliant for unobtrusive and high-fidelity signal acquisition. Thin conductive polymer film is regarded as an ideal interface; however, it is very challenging to simultaneously balance mechanical robustness and opto-electrical property. Here, a 40 nm-thick film based on photolithographic double-network conductive polymer mediated by graphene layer is reported, which concurrently enables stretchability, conductivity, and conformability. Photolithographic polymer and graphene endow the film photopatternability, enhance stress dissipation capability, as well as improve opto-electrical conductivity (4458 S cm-1@>90% transparency) through molecular rearrangement by π-π interaction, electrostatic interaction, and hydrogen bonding. The film is further applied onto corrugated facial skin, the subtle electromyogram is monitored, and machine learning algorithm is performed to understand complex emotions, indicating the outstanding ability for stretchable and compliant bioelectronics.

9.
Melanoma Res ; 34(4): 326-334, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38814728

ABSTRACT

Long follow-up time is needed for overall survival (OS) data to mature for early-stage melanoma. This retrospective study aimed to describe the relationships between OS and two intermediate endpoints - real-world recurrence-free survival (rwRFS) and real-world distant metastasis-free survival (rwDMFS) - for patients with stage IIB or IIC melanoma that was completely resected from 1 January 2008 to 31 December 2017, with follow-up to 31 December 2020. We used three different approaches to describe the relationships: estimates of correlation using Kendall τ rank correlation; comparisons of all-cause survival with/without recurrence or distant metastasis using adjusted Cox proportional hazard models; and landmark analyses of all-cause survival stratified by recurrence status at 1-5 years. During a 39-month median follow-up from surgical resection, 223/567 patients (39%) experienced recurrence, among whom 171/567 patients (30%) developed distant metastasis. Median OS from surgical resection was 117.6 months [95% confidence interval (CI), 104.7-not reached], median rwRFS was 49.8 months (95% CI, 39.6-61.0), and median rwDMFS was 70.9 months (95% CI, 58.4-89.1). We observed strong correlations between rwRFS and OS, and between rwDMFS and OS (Kendall τ of 0.73 and 0.82, respectively). Risk of death was significantly greater after recurrence (all-cause survival adjusted hazard ratio [HR], 7.48; 95% CI, 4.55-12.29) or distant metastasis (adjusted HR, 11.00; 95% CI, 6.92-17.49). Risk of death remained significantly elevated with recurrence or distant metastasis by landmark years 1, 3, and 5 after surgical resection. These findings support the use of recurrence/rwRFS and distant metastasis/rwDMFS as surrogate endpoints for OS after complete resection of stage IIB or IIC melanoma.


Subject(s)
Melanoma , Neoplasm Recurrence, Local , Skin Neoplasms , Humans , Melanoma/surgery , Melanoma/mortality , Melanoma/pathology , Male , Female , Middle Aged , Retrospective Studies , Skin Neoplasms/pathology , Skin Neoplasms/surgery , Skin Neoplasms/mortality , Neoplasm Recurrence, Local/pathology , Aged , Neoplasm Staging , Adult , Disease-Free Survival , Neoplasm Metastasis
10.
Expert Opin Drug Metab Toxicol ; 20(6): 411-417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38758223

ABSTRACT

INTRODUCTION: Donanemab is a humanized monoclonal antibody that significantly reduces cerebral amyloid plaques in Alzheimer's Disease (AD). It can delay disease progression and cognitive decline, making it one of the most promising disease-modifying treatments in the current treatment landscape. AREAS COVERED: This paper covers the current literature available on pharmacokinetics, pharmacodynamics, safety, and tolerability of donanemab. Publications from PubMed and Google were reviewed. A summary of regulatory approvals and current clinical data is also provided. EXPERT OPINION/COMMENTARY: Donanemab as a therapy for AD has more effective disease-modifying effects compared to lecanemab. Donanemab appears generally well-tolerated; however, it may have higher rates of severe side effects, such as amyloid-related imaging abnormalities (ARIA), that could lead to death. Guidelines for frequency of MRI monitoring for ARIA/safety are pending but will be integral to determining its use. Despite some limitations, donanemab is expected to receive FDA approval, giving clinicians access to another disease-modifying drug. Overall, more data is needed about donanemab, especially relating to safety, efficacy, cost, and integration with other treatments, but its development signifies progress in AD treatment.


Alzheimer's Disease (AD) is a brain disorder that severely impacts memory, behavior, and thinking. The most common treatments manage symptoms but do not slow disease progression or improve function. Accumulation of proteins called amyloid-beta plaques in the brain are one of the main causes of the disease. Donanemab is an antibody that helps the body remove these plaques. This review summarizes what is currently known about the safety of donanemab, how it works, and the extent to which it can help people with AD.Results suggest that donanemab significantly decreases the amount of plaques in the brain, delays disease progression, and improves cognition. Treatment can prevent reaccumulation of plaques for an extended period of time. There are some side effects associated with treatment, but they are generally manageable and resolve when the drug is stopped. In rare cases, more serious side effects were reported. These require careful monitoring and an evaluation of potential risk compared to benefit. Overall, current information on donanemab is extensive and shows promise. However, to help caregivers and people with AD make informed decisions on using the drug, further research is needed to fully explore donanemab's safety, cost, and efficacy compared to other therapies in the same class.


Subject(s)
Alzheimer Disease , Antibodies, Monoclonal, Humanized , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Animals , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacology , Disease Progression , Plaque, Amyloid/drug therapy , Cognitive Dysfunction/drug therapy , Magnetic Resonance Imaging , Drug Development
11.
Sci Total Environ ; 934: 173084, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38735314

ABSTRACT

Water use efficiency (defined as the ratio of gross primary productivity to plant transpiration, WUET) describes the tradeoff between ecosystem carbon uptake and water loss. However, a comprehensive understanding of the impact of soil and atmospheric moisture deficits on WUET across large regions remains incomplete. Solar-induced chlorophyll fluorescence (SIF) serves as an effective signal for measuring both terrestrial vegetation photosynthesis and transpiration, thereby enabling a rapid response to changes in the physiological status of plants under water stress. The objectives of this study were to: 1) mechanistically calculate WUET using top-of-canopy SIF data and meteorological information by using the revised mechanistic light response model and the Penman-Monteith equation; 2) analyze the effects of atmospheric and soil water deficits on SIF-based WUET by using decoupled soil water content (SWC) and vapor pressure deficit (VPD); 3) evaluate estimated SIF-based WUET against data from 28 eddy covariance (EC) flux sites representing eight different vegetation types. Results indicated that the model performed well in ecosystems with dense canopies, explaining 56 % of the daily variability in EC tower-based WUET. For the years 2019-2020, the global average WUET derived from SIF was 3.49 g C/kg H2O. Notably, this value exceeded 4 g C/kg H2O in tropical rainforest regions near the equator and went beyond 5 g C/kg H2O in the high-latitude regions of the Northern Hemisphere. We found that SIF-based WUET was primarily influenced by VPD rather than SWC in over 90 % of the global vegetated area. The model used in this study increased our ability to mechanistically estimate WUET with SIF at the global scale, thereby highlighting the significance of the global response of SIF-based WUET to water stress, and also enhancing our understanding of the water­carbon cycle in terrestrial ecosystems.


Subject(s)
Droughts , Water , Ecosystem , Atmosphere/chemistry , Plant Transpiration , Soil/chemistry , Photosynthesis , Environmental Monitoring , Chlorophyll/metabolism
12.
ACS Appl Mater Interfaces ; 16(22): 29267-29281, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38780052

ABSTRACT

The dramatic growth of smart wearable electronics has generated a demand for conductive hydrogels due to their tunability, stimulus responsiveness, and multimodal sensing capabilities. However, the substantial trade-off between mechanical and electrical properties hinders their multifunctionality. Here, we report a double-network hydrogel composite that features a conductive "highway" constructed using magnetic-field-aligned nickel nanowires and liquid metal. The liquid metal fills the gaps between the aligned nickel nanowires. Such interconnected structures can form efficient conductive paths at low filler content, resulting in high conductivity (1.11 × 104 S/m) and mechanical compliance (Young's modulus, 89 kPa; toughness, 721 kJ/m3). When used as a wearable sensor, the hydrogel displays a high sensitivity and fast response for wireless motion detection and human-machine interaction. Furthermore, by exploiting its outstanding conductivity and electrical heating capacity, the hydrogel integrates electromagnetic shielding and thermal management functionalities. Owing to these all-around properties, our design offers a broader platform for expanding hydrogel applications.

14.
Theranostics ; 14(7): 2835-2855, 2024.
Article in English | MEDLINE | ID: mdl-38773970

ABSTRACT

Rationale: The large-scale genomic analysis classifies glioblastoma (GBM) into three major subtypes, including classical (CL), proneural (PN), and mesenchymal (MES) subtypes. Each of these subtypes exhibits a varying degree of sensitivity to the temozolomide (TMZ) treatment, while the prognosis corresponds to the molecular and genetic characteristics of the tumor cell type. Tumors with MES features are predominantly characterized by the NF1 deletion/alteration, leading to sustained activation of the RAS and PI3K-AKT signaling pathways in GBM and tend to acquire drug resistance, resulting in the worst prognosis compared to other subtypes (PN and CL). Here, we used the CRISPR/Cas9 library screening technique to detect TMZ-related gene targets that might play roles in acquiring drug resistance, using overexpressed KRAS-G12C mutant GBM cell lines. The study identified a key therapeutic strategy to address the chemoresistance against the MES subtype of GBM. Methods: The CRISPR-Cas9 library screening was used to discover genes associated with TMZ resistance in the U87-KRAS (U87-MG which is overexpressed KRAS-G12C mutant) cells. The patient-derived GBM primary cell line TBD0220 was used for experimental validations in vivo and in vitro. Chromatin isolation by RNA purification (ChIRP) and chromatin immunoprecipitation (ChIP) assays were used to elucidate the silencing mechanism of tumor suppressor genes in the MES-GBM subtype. The small-molecule inhibitor EPIC-0412 was obtained through high-throughput screening. Transmission electron microscopy (TEM) was used to characterize the exosomes (Exos) secreted by GBM cells after TMZ treatment. Blood-derived Exos-based targeted delivery of siRNA, TMZ, and EPIC-0412 was optimized to tailor personalized therapy in vivo. Results: Using the genome-wide CRISPR-Cas9 library screening, we found that the ERBIN gene could be epigenetically regulated in the U87-KRAS cells. ERBIN overexpression inhibited the RAS signaling and downstream proliferation and invasion effects of GBM tumor cells. EPIC-0412 treatment inhibited tumor proliferation and EMT progression by upregulating the ERBIN expression both in vitro and in vivo. Genome-wide CRISPR-Cas9 screening also identified RASGRP1(Ras guanine nucleotide-releasing protein 1) and VPS28(Vacuolar protein sorting-associated protein 28) genes as synthetically lethal in response to TMZ treatment in the U87-KRAS cells. We found that RASGRP1 activated the RAS-mediated DDR pathway by promoting the RAS-GTP transformation. VPS28 promoted the Exos secretion and decreased intracellular TMZ concentration in GBM cells. The targeted Exos delivery system encapsulating drugs and siRNAs together showed a powerful therapeutic effect against GBM in vivo. Conclusions: We demonstrate a new mechanism by which ERBIN is epigenetically silenced by the RAS signaling in the MES subtype of GBM. Restoration of the ERBIN expression with EPIC-0412 significantly inhibits the RAS signaling downstream. RASGRP1 and VPS28 genes are associated with the promotion of TMZ resistance through RAS-GDP to RAS-GTP transformation and TMZ efflux, as well. A quadruple combination therapy based on a targeted Exos delivery system demonstrated significantly reduced tumor burden in vivo. Therefore, our study provides new insights and therapeutic approaches for regulating tumor progression and TMZ resistance in the MES-GBM subtype.


Subject(s)
CRISPR-Cas Systems , Drug Resistance, Neoplasm , Exosomes , Glioblastoma , Temozolomide , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/drug therapy , Temozolomide/pharmacology , Temozolomide/therapeutic use , Humans , Drug Resistance, Neoplasm/genetics , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Animals , Exosomes/metabolism , Exosomes/genetics , Mice , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Carcinogenesis/genetics , Carcinogenesis/drug effects , Mice, Nude , Xenograft Model Antitumor Assays
15.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760744

ABSTRACT

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Subject(s)
Cell Differentiation , Histone Deacetylases , Mesenchymal Stem Cells , Nanoparticles , Animals , Mice , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Nanoparticles/chemistry , Cell Differentiation/drug effects , Histone Deacetylases/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoblasts/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Male , Bone Regeneration/drug effects , Osteogenesis/drug effects , Cell Nucleus/metabolism , Fracture Healing/drug effects , Humans , Membrane Proteins
16.
Small ; : e2400797, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618921

ABSTRACT

Visualization of training effectiveness is critical to patients' confidence and eventual rehabilitation. Here, an innovative magnetoinductive pressure sensor is proposed for monitoring hand rehabilitation in stroke hemiplegic patients. It couples the giant magneto and stress-impedance effects of a square spiral amorphous wire with the giant magnetoelastic effect of a polymer magnet (NdFeB@PDMS). The addition of the magnetoelastic layer results in a sensitivity improvement of 178%, a wide sensing range (up to 1 MPa), fast response/recovery times (40 ms), and excellent mechanical robustness (over 15 000 cycles). Further integration with an LC oscillation circuit enables frequency adjustment into the MHz range resulting in a sensitivity of 6.6% kPa-1 and outstanding linearity (R2 =  0.99717) over a stress range of up to 100 kPa. When attached to a commercial split-fingerboard, the sensor is capable of dynamically monitoring the force in each finger, providing a reading of the rehabilitation process. Unlike conventional inductive sensors, the sensor is based on an inductive force-responsive material (amorphous wire), which significantly boosts the sensitivity. The approach also demonstrates the potential of magnetoelasticity in static pressure sensing, which is highly sensitive to dynamic pressure only through electromagnetic induction. This makes it more suitable for long-term and continuous human health monitoring.

17.
Adv Sci (Weinh) ; 11(25): e2401345, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38647436

ABSTRACT

The development of semiconducting polymers with good processability in green solvents and competitive electrical performance is essential for realizing sustainable large-scale manufacturing and commercialization of organic electronics. A major obstacle is the processability-performance dichotomy that is dictated by the lack of ideal building blocks with balanced polarity, solubility, electronic structures, and molecular conformation. Herein, through the integration of donor, quinoid and acceptor units, an unprecedented building block, namely TQBT, is introduced for constructing a serial of conjugated polymers. The TQBT, distinct in non-symmetric structure and high dipole moment, imparts enhanced solubility in anisole-a green solvent-to the polymer TQBT-T. Furthermore, PTQBT-T possess a highly rigid and planar backbone owing to the nearly coplanar geometry and quinoidal nature of TQBT, resulting in strong aggregation in solution and localized aggregates in film. Remarkably, PTQBT-T films spuncast from anisole exhibit a hole mobility of 2.30 cm2 V-1 s-1, which is record high for green solvent-processable semiconducting polymers via spin-coating, together with commendable operational and storage stability. The hybrid building block emerges as a pioneering electroactive unit, shedding light on future design strategies in high-performance semiconducting polymers compatible with green processing and marking a significant stride towards ecofriendly organic electronics.

18.
19.
Polymers (Basel) ; 16(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611130

ABSTRACT

To meet the environmental protection and flame retardancy requirements for epoxy resins (EPs) in certain fields, in this study, a novel triazine-ring-containing DOPO-derived compound (VDPD), derived from vanillin, 2,4-Diamino-6-phenyl-1,3,5-triazine, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), was synthesized using a one-pot method. Flame-retardant epoxy resin (FREP) was prepared by adding various ratios of VDPD to EP and curing with 4,4-diaminodiphenylmethane (DDM). The curing behavior, thermal stability, mechanical properties, and flame-retardant properties of the FREP were examined in various tests. According to the results, when the amount of VDPD added to the EP increased, the glass transition temperature of the FREP decreased linearly, and the flame-retardant properties gradually improved. With a 0.4 wt.% P content, the vertical burning rating of EP/DDM/VDPD-0.4 (according to the theoretical content of VDPD) reached the V-0 level, and the LOI value reached 33.1%. In addition, the results of a CCT showed that the peak heat release rate (PHRR) of EP/DDM/VDPD-0.4 decreased by 32% in comparison with that of the EP. Furthermore, compared with those of the EP, the tensile strength of EP/DDM/VDPD-0.4 decreased from 80.2 MPa to 74.3 MPa, only decreasing by 6 MPa, and the tensile modulus increased. Overall, VDPD can maintain the mechanical properties of EP and effectively improve its flame-retardant properties.

20.
Curr Hypertens Rep ; 26(5): 201-211, 2024 May.
Article in English | MEDLINE | ID: mdl-38460066

ABSTRACT

PURPOSE OF REVIEW: The effect of continuous positive airway pressure (CPAP) on resistant hypertension in patients at high risk with obstructive sleep apnea (OSA) needs further investigation. We aimed to determine the effect of CPAP on blood pressure in patients with resistant hypertension and OSA. Databases including PubMed, EMBASE, MEDLINE, the Cochrane Library, and CMB were searched. Data were pooled using a random-effects or fixed-effects model to derive weighted mean differences (WMDs) and 95% confidence intervals (CIs). RECENT FINDINGS: A total of 12 trials and 718 participants were included. Compared with control, CPAP significantly reduced 24-h systolic blood pressure (SBP) (WMD: - 5.92 mmHg [ - 8.72, - 3.11]; P<0.001), 24-h diastolic blood pressure (DBP) (WMD: - 4.44 mmHg [- 6.26 , - 2.62]; P <0.001),  daytime SBP (WMD: - 5.76 mmHg [ - 9.16, - 2.36]; P <0.001),  daytime DBP (WMD: - 3.92 mmHg [- 5.55, - 2.30];  nighttime SBP (WMD: - 4.87 mmHg [ - 7.96 , - 1.78]; P = 0.002), and nighttime DBP (WMD: - 2.05 mmHg [- 2.99, - 1.11]; P<0.001) in patients with resistant hypertension and OSA. CPAP improved the blood pressure both in the short (<3 months) and long term (≥ 3 months). No significant impact on mean heart rate was noted (WMD: -2.76 beats per min [- 7.50, 1.97]; P = 0.25). CPAP treatment was associated with BP reduction in patients with resistant hypertension and OSA.


Subject(s)
Blood Pressure , Continuous Positive Airway Pressure , Hypertension , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/therapy , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/complications , Continuous Positive Airway Pressure/methods , Hypertension/physiopathology , Hypertension/therapy , Blood Pressure/physiology , Treatment Outcome , Antihypertensive Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL