Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mycologia ; 116(4): 498-508, 2024.
Article in English | MEDLINE | ID: mdl-38848260

ABSTRACT

Fossil epifoliar fungi are valuable indicators of paleoenvironment and paleoecology. The Meliolaceae, members of which typically inhabit the surface of living plants as biotrophs or pathogens, is one of the largest groups of epifoliar fungi. In this study, we report a novel fossil species of Meliolinites Selkirk (fossil Meliolaceae), Meliolinites tengchongensis, on the lower epidermis of compressed fossil Rhodoleia (Hamamelidaceae) leaves from the Upper Pliocene Mangbang Formation of Tengchong, Yunnan, southwestern China. Meliolinites tengchongensis is characterized by web-like, superficial, brown to dark brown, septate, and branching mycelia bearing 2-celled appressoria and unicellular phialides. The fungal colonies also include ellipsoidal, 5-celled, 4-septate ascospores and dark brown perithecia with suborbicular outline and verrucose surface. The well-preserved vegetative and reproductive organs help us to explore the potential disease process of the new fossil species. Besides, the presence of fungal remains indicates that the fungal taxon might have maintained its host preference since at least the Late Pliocene. Furthermore, the occurrence of both fossil fungi and their host plants in Tengchong indicate a subtropical-tropical, warm, and humid climate during the Late Pliocene, whereas the distribution pattern of the fungi on the host leaves suggests that Rhodoleia may have been a part of the middle-upper canopies in the Tengchong Late Pliocene multilayered forest.


Subject(s)
Fossils , Plant Leaves , Plant Leaves/microbiology , China , Ascomycota/classification , Ascomycota/isolation & purification , Spores, Fungal
2.
J Bone Miner Metab ; 35(6): 649-658, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28012008

ABSTRACT

Several studies indicated bone mineral density (BMD) and alcohol intake might share common genetic factors. The study aimed to explore potential SNPs/genes related to both phenotypes in US Caucasians at the genome-wide level. A bivariate genome-wide association study (GWAS) was performed in 2069 unrelated participants. Regular drinking was graded as 1, 2, 3, 4, 5, or 6, representing drinking alcohol never, less than once, once or twice, three to six times, seven to ten times, or more than ten times per week respectively. Hip, spine, and whole body BMDs were measured. The bivariate GWAS was conducted on the basis of a bivariate linear regression model. Sex-stratified association analyses were performed in the male and female subgroups. In males, the most significant association signal was detected in SNP rs685395 in DYNC2H1 with bivariate spine BMD and alcohol drinking (P = 1.94 × 10-8). SNP rs685395 and five other SNPs, rs657752, rs614902, rs682851, rs626330, and rs689295, located in the same haplotype block in DYNC2H1 were the top ten most significant SNPs in the bivariate GWAS in males. Additionally, two SNPs in GRIK4 in males and three SNPs in OPRM1 in females were suggestively associated with BMDs (of the hip, spine, and whole body) and alcohol drinking. Nine SNPs in IL1RN were only suggestively associated with female whole body BMD and alcohol drinking. Our study indicated that DYNC2H1 may contribute to the genetic mechanisms of both spine BMD and alcohol drinking in male Caucasians. Moreover, our study suggested potential pleiotropic roles of OPRM1 and IL1RN in females and GRIK4 in males underlying variation of both BMD and alcohol drinking.


Subject(s)
Alcohol Drinking/genetics , Bone Density/genetics , Genetic Pleiotropy , Genome-Wide Association Study , White People/genetics , Adult , Female , Haplotypes/genetics , Humans , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide/genetics
3.
J Clin Endocrinol Metab ; 100(11): E1457-66, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26312577

ABSTRACT

OBJECTIVE: Age at menarche (AAM) is determined by the overall duration of endocrine-tissue sex hormone exposure levels. Osteoporosis, the most common metabolic bone disease, is characterized primarily by reduced bone mineral density (BMD) and an increased risk of low trauma fractures. Bone was an endocrine organ regulating the synthesis and secretion of sex steroid hormones. The mutual dependence between bone and gonads underscore the importance of genetic approaches to identify novel pleiotropic genetic factors coregulating BMD and AAM. In this study, we performed a bivariate genome-wide association study (GWAS) to explore novel ethnic common loci and/or genes that may influence both AAM and BMD. METHODS: We analyzed genotyping data available for 826 unrelated Chinese subjects using genome-wide human genotyping arrays. After quality control, a total of 702 413 single-nucleotide polymorphisms (SNPs) were tested for association using a bivariate linear regression model. The interesting SNPs were replicated in three independent cohorts including 1728 unrelated Caucasians, 709 African-Americans, and 408 Hispanic-Americans. RESULTS: We found four SNPs (rs10817638, rs7851259, rs10982287, and rs4979427), located upstream of the ATP6V1G1 gene, were bivariately associated with hip BMD-AAM (P = 4.90 × 10(-7), P = 1.07 × 10(-6), P = 1.28 × 10(-5), and P = 5.42 × 10(-5), respectively). These four SNPs were replicated in African-Americans, with corresponding values of P = 1.95 × 10(-2), P = 3.18 × 10(-2), P = 2.57 × 10(-2), and P = 3.64 × 10(-2), respectively. rs10817638 and rs10982287 were further replicated in Caucasians (P = 1.76 × 10(-2) and P = 9.42 × 10(-3), respectively) and Hispanic-Americans (P = 8.37 × 10(-3) and P = 1.52 × 10(-3), respectively). Meta-analyses yielded stronger association signals for rs10817638 and rs10982287 with combined values of P = 3.02 × 10(-9) and P = 3.49 × 10(-9), respectively. CONCLUSIONS: Our study implicated ATP6V1G1 as a novel pleiotropic gene underlying variation of both BMD and AAM. The findings enhance our knowledge of genetic associations between BMD and AAM and provide a rationale for subsequent functional studies of these implicated genes in the pathophysiology of diseases/traits, such as osteoporosis and AAM.


Subject(s)
5' Untranslated Regions , Adolescent Development , Genetic Predisposition to Disease , Menarche/genetics , Osteoporosis/genetics , Polymorphism, Single Nucleotide , Vacuolar Proton-Translocating ATPases/genetics , Adolescent , Adult , Aged , Asian People , Bone Density , China , Female , Genetic Association Studies , Genome-Wide Association Study , Humans , Menarche/metabolism , Middle Aged , Osteoporosis/metabolism , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , United States , Vacuolar Proton-Translocating ATPases/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL