Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Cell Mol Biol Lett ; 29(1): 93, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956502

ABSTRACT

BACKGROUND: Anti-angiogenic therapy has become one of the effective treatment methods for tumors. Long noncoding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis and angiogenesis in EC. However, the underlying mechanisms of lncRNA TRPM2-AS in EC are still not clear. METHODS: We screened the differently expressed lncRNAs that were highly associated with poor prognosis and angiogenesis of EC by bioinformatics analysis, and constructed a ceRNA network based on the prognostic lncRNAs. The subcellular localization of TRPM2-AS was determined by fluorescence in situ hybridization (FISH) and nuclear cytoplasmic fractionation assay. CCK-8, EdU, transwell, western blot, qRT-PCR and endothelial tube formation assay were used to evaluate the effects of TRPM2-AS on the proliferation, invasion, migration of EC cells and angiogenesis. The targeted microRNA (miRNA) of TRPM2-AS was predicted by bioinformatic methods. The interaction between TRPM2-AS and miR497-5p, miR497-5p and SPP1 were analyzed by RNA immunoprecipitation and dual-luciferase reporter assay. A subcutaneous tumor model was used to explore TRPM2-AS's function in vivo. CIBERSORT was used to analyze the correlation between TRPM2-AS and immune cell immersion in EC. RESULTS: We found that the expression of TRPM2-AS and SPP1 was aberrantly upregulated, while miR-497-5p expression was significantly downregulated in EC tissues and cells. TRPM2-AS was closely correlated with the angiogenesis and poor prognosis in EC patients. Mechanistically, TRPM2-AS could sponge miR-497-5p to release SPP1, thus promoting the proliferation, invasion and migration of EC cells and angiogenesis of HUVECs. Knockdown of TRPM2-AS in xenograft mouse model inhibited tumor proliferation and angiogenesis in vivo. In addition, TRPM2-AS plays a vital role in regulating the tumor immune microenvironment of EC, overexpression of TRPM2-AS in EC cells stimulated the polarization of M2 macrophages and angiogenesis through secreting SPP1 enriched exosomes. CONCLUSION: The depletion of TRPM2-AS inhibits the oncogenicity of EC by targeting the miR-497-5p/SPP1 axis. This study offers a better understanding of TRPM2-AS's role in regulating angiogenesis and provides a novel target for EC treatment.


Subject(s)
Cell Movement , Cell Proliferation , Endometrial Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs , Neovascularization, Pathologic , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neovascularization, Pathologic/genetics , Female , Animals , Cell Proliferation/genetics , Cell Line, Tumor , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Cell Movement/genetics , Mice , Disease Progression , Mice, Nude , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Mice, Inbred BALB C , Prognosis , Angiogenesis
2.
Exp Cell Res ; 414(2): 113098, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35288170

ABSTRACT

BACKGROUND: Choriocarcinoma (CC) is a highly aggressive malignant tumor that mostly occurs in women of childbearing age. Chemotherapy is the main treatment for CC, but it has side effects and causes drug resistance, which can lead to treatment failure. Extracellular vesicles (EVs) that deliver microRNAs (miRNAs) have emerged as a novel and promising therapeutic tool for inhibiting tumor progression and metastasis. This research aimed to study the effects of miR-127-3p-enriched EVs (EV-miR-127-3p) on CC and underlying mechanisms. METHODS: Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting were performed to determine the miR-127-3p and integrin subunit alpha-6 (ITGA6) expression levels. The interaction between miR-127-3p and ITGA6 was confirmed by a dual-luciferase reporter assay. Human umbilical cord mesenchymal stem cells (hUCMSCs) were identified using flow cytometry and multilineage differentiation. Uptake of labeled EVs was demonstrated using immunofluorescence staining and flow cytometry assays. EV-miR-127-3p were isolated from the culture medium of hUCMSCs and co-cultured with JEG-3 or JAR cells to evaluate their effects on cell proliferation, invasion, migration, and apoptosis, using the cell counting kit-8, Transwell, and flow cytometry assays. Epithelial-mesenchymal transition (EMT) and the transforming growth factor (TGF)-ß1/Smad pathway were investigated using qRT-PCR and western blotting. RESULTS: The expression of miR-127-3p was downregulated, while that of ITGA6 was upregulated in CC cell lines. ITGA6 was identified as a target gene of miR-127-3p. EV-miR-127-3p could inhibit the proliferation, invasion, migration, and promote the apoptosis of CC cells. We observed that EV-miR-127-3p suppressed EMT of CC cells by targeting ITGA6. In addition, the knockdown of ITGA6 inhibited the TGF-ß1/Smad pathway and reversed the EMT-promoting effect. CONCLUSION: These results indicate that EV-miR-127-3p from hUCMSCs exhibits anti-tumor effects by targeting ITGA6, which may be used as a novel therapeutic strategy for CC treatment.


Subject(s)
Choriocarcinoma , Extracellular Vesicles , MicroRNAs , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Choriocarcinoma/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Integrin alpha6/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL