Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters








Publication year range
1.
Biology (Basel) ; 11(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-36101412

ABSTRACT

Traumatic brain injury (TBI) is a significant risk factor for the development of sleep and circadian rhythm impairments. In this study we compare the circadian rhythms and sleep patterns in the high-frequency head impact (HFHI) and controlled cortical impact (CCI) mouse models of TBI. These mouse models have different injury mechanisms key differences of pathology in brain regions controlling circadian rhythms and EEG wave generation. We found that both HFHI and CCI caused dysregulation in the diurnal expression of core circadian genes (Bmal1, Clock, Per1,2, Cry1,2) at 24 h post-TBI. CCI mice had reduced locomotor activity on running wheels in the first 7 d post-TBI; however, both CCI and HFHI mice were able to maintain circadian behavior cycles even in the absence of light cues. We used implantable EEG to measure sleep cycles and brain activity and found that there were no differences in the time spent awake, in NREM or REM sleep in either TBI model. However, in the sleep states, CCI mice have reduced delta power in NREM sleep and reduced theta power in REM sleep at 7 d post-TBI. Our data reveal that different types of brain trauma can result in distinct patterns of circadian and sleep disruptions and can be used to better understand the etiology of sleep disorders after TBI.

2.
Prog Neurobiol ; 214: 102286, 2022 07.
Article in English | MEDLINE | ID: mdl-35537572

ABSTRACT

There is a large unmet need for improved treatment for temporal lobe epilepsy (TLE); circuit-specific manipulation that disrupts the initiation and propagation of seizures is promising in this regard. The midline thalamus, including the mediodorsal nucleus (MD) is a critical distributor of seizure activity, but its afferent and efferent pathways that mediate seizure activity are unknown. Here, we used chemogenetics to silence input and output projections of the MD to discrete regions of the frontal cortex in the kindling model of TLE in rats. Chemogenetic inhibition of the projection from the amygdala to the MD abolished seizures, an effect that was replicated using optogenetic inhibition. Chemogenetic inhibition of projections from the MD to the prelimbic cortex likewise abolished seizures. By contrast, inhibition of projections from the MD to other frontal regions produced partial (orbitofrontal cortex, infralimbic cortex) or no (cingulate, insular cortex) attenuation of behavioral or electrographic seizure activity. These results highlight the particular importance of projections from MD to prelimbic cortex in the propagation of amygdala-kindled seizures.


Subject(s)
Kindling, Neurologic , Thalamus , Amygdala/physiology , Animals , Frontal Lobe/physiology , Humans , Kindling, Neurologic/physiology , Rats , Seizures , Thalamus/physiology
3.
Epilepsia ; 62(9): 2283-2296, 2021 09.
Article in English | MEDLINE | ID: mdl-34309008

ABSTRACT

OBJECTIVE: The nucleus reticularis of the thalamus (nRT) is most studied in epilepsy for its role in the genesis of absence seizures; much less is known regarding its role in other seizure types, including those originating in limbic structures and the temporal lobe. As it is a major source of inhibitory input to higher order thalamic nuclei, stimulation of the nRT may be an effective strategy to disrupt seizure activity that requires thalamic engagement. METHODS: We recorded single unit activity from the nRT prior to and after infusion of bicuculline into the area tempestas. We monitored single unit activity time-locked with interictal spikes. We optogenetically activated the nRT in both the area tempestas and amygdala kindling models. We tested a role for projections from the nRT to higher order midline thalamic nuclei through the use of retrogradely trafficked viral vector. RESULTS: Mean firing rate in the nRT was decreased after infusion of bicuculline into the area tempestas as compared to the preinfusion baseline. nRT unit firing in response to interictal spikes was heterogeneous, with an approximately equal proportion of neurons displaying (1) no change in firing, (2) increased firing, and (3) decreasing firing. Optogenetic activation of the nRT significantly suppressed seizure activity in both the area tempestas and amygdala kindling models. Optogenetic activation of contralaterally targeting projections but not ipsilaterally targeting projections from the nRT to the midline thalamus significantly suppressed seizures in the kindling model. SIGNIFICANCE: Although the nRT is typically thought of in the context of absence seizures, our data show that it may be a viable target for other seizure types. In two models that recapitulate the seizure types seen in temporal lobe epilepsy, nRT activation suppressed both electrographic and behavioral seizures. These data suggest that the nRT should be considered more broadly in the context of epilepsy.


Subject(s)
Optogenetics , Seizures , Bicuculline , Epilepsy, Absence/genetics , Humans , Thalamus
4.
Front Behav Neurosci ; 14: 595315, 2020.
Article in English | MEDLINE | ID: mdl-33328922

ABSTRACT

Cannabinoid (CB) receptor agonists are of growing interest as targets for anti-seizure therapies. Here we examined the effect of systemic administration of the CB receptor agonist WIN 55,212-2 (WIN) against audiogenic seizures (AGSs) in the Genetically Epilepsy Prone Rat (GEPR)-3 strain, and against seizures evoked focally from the Area Tempestas (AT). We compared these results to the effect of focal administration of the CB1/2 receptor agonist CP 55940 into the deep layers of the superior colliculus (DLSC), a brain site expressing CB1 receptors. While systemic administration of WIN dose-dependently decreased AGS in GEPR-3s, it was without effect in the AT model. By contrast, intra-DLSC infusion of CP 55940 decreased seizures in both models. To determine if the effects of systemic WIN were dependent upon activation of CB1 receptors in the DSLC, we next microinjected the CB1 receptor antagonist SR141716, before WIN systemic treatment, and tested animals for AGS susceptibility. The pretreatment of the DLSC with SR141716 was without effect on its own and did not alter the anti-convulsant action of WIN systemic administration. Thus, while CB receptors in the DLSC are a potential site of anticonvulsant action, they are not necessary for the effects of systemically administered CB agonists.

5.
Cell Mol Neurobiol ; 40(7): 1199-1211, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32060858

ABSTRACT

Serum amyloid A (SAA) is an acute phase protein upregulated in the liver after traumatic brain injury (TBI). So far, it has not been investigated whether SAA expression also occurs in the brain in response to TBI. For this, we performed a moderate controlled cortical impact injury in adult male and female mice and analyzed brain, blood, and liver samples at 6 h, 1, 3, and 10 days post-injury (dpi). We measured the levels of SAA in serum, brain and liver by western blot. We also used immunohistochemical techniques combined with in situ hybridization to determine SAA mRNA and protein expression in the brain. Our results revealed higher levels of SAA in the bloodstream in males compared to females at 6 h post-TBI. Liver and serum SAA protein showed a peak of expression at 1 dpi followed by a decrease at 3 to 10 dpi in both sexes. Both SAA mRNA and protein expression colocalize with astrocytes and macrophages/microglia in the cortex, corpus callosum, thalamus, and hippocampus after TBI. For the first time, here we show that SAA is expressed in the brain in response to TBI. Collectively, SAA expression was higher in males compared to females, and in association with the sex-dependent neuroinflammatory response after brain injury. We suggest that SAA could be a crucial protein associated to the acute neuroinflammation following TBI, not only for its hepatic upregulation but also for its expression in the injured brain.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain/metabolism , Serum Amyloid A Protein/metabolism , Sex Factors , Animals , Astrocytes/metabolism , Brain Injuries/metabolism , Disease Models, Animal , Female , Inflammation/metabolism , Male , Mice, Inbred C57BL , Microglia/metabolism
6.
Proc Natl Acad Sci U S A ; 116(52): 27084-27094, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843937

ABSTRACT

Three decades of studies have shown that inhibition of the substantia nigra pars reticulata (SNpr) attenuates seizures, yet the circuits mediating this effect remain obscure. SNpr projects to the deep and intermediate layers of the superior colliculus (DLSC) and the pedunculopontine nucleus (PPN), but the contributions of these projections are unknown. To address this gap, we optogenetically silenced cell bodies within SNpr, nigrotectal terminals within DLSC, and nigrotegmental terminals within PPN. Inhibition of cell bodies in SNpr suppressed generalized seizures evoked by pentylenetetrazole (PTZ), partial seizures evoked from the forebrain, absence seizures evoked by gamma-butyrolactone (GBL), and audiogenic seizures in genetically epilepsy-prone rats. Strikingly, these effects were fully recapitulated by silencing nigrotectal projections. By contrast, silencing nigrotegmental terminals reduced only absence seizures and exacerbated seizures evoked by PTZ. These data underscore the broad-spectrum anticonvulsant efficacy of this circuit, and demonstrate that specific efferent projection pathways differentially control different seizure types.

7.
Biomed Res Int ; 2019: 5967816, 2019.
Article in English | MEDLINE | ID: mdl-31119176

ABSTRACT

Traumatic brain injury (TBI) causes a wide variety of neuroinflammatory events. These neuroinflammatory events depend, to a greater extent, on the severity of the damage. Our previous studies have shown that the liver produces serum amyloid A (SAA) at high levels in the initial hours after controlled cortical impact (CCI) injury in mice. Clinical studies have reported detectable SAA in the plasma of brain injury patients, but it is not clear if SAA levels depend on TBI severity. To evaluate this question, we performed a mild to severe CCI injury in wild-type mice. We collected blood samples and brains at 1, 3, and 7 days after injury for protein detection by western blotting, enzyme-linked immunosorbent assay, or immunohistochemical analysis. Our results showed that severe CCI injury compared to mild CCI injury or sham mice caused an increased neuronal death, larger lesion volume, increased microglia/macrophage density, and augmented neutrophil infiltration. Furthermore, we found that the serum levels of SAA protein ascended in the blood in correlation with high neuroinflammatory and neurodegenerative responses. Altogether, these results suggest that serum SAA may be a novel neuroinflammation-based, and severity-dependent, biomarker for acute TBI.


Subject(s)
Biomarkers/blood , Brain Injuries, Traumatic/blood , Brain/pathology , Serum Amyloid A Protein/metabolism , Animals , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Humans , Mice , Trauma Severity Indices
8.
Elife ; 72018 05 31.
Article in English | MEDLINE | ID: mdl-29848447

ABSTRACT

Reward contingencies are dynamic: outcomes that were valued at one point may subsequently lose value. Action selection in the face of dynamic reward associations requires several cognitive processes: registering a change in value of the primary reinforcer, adjusting the value of secondary reinforcers to reflect the new value of the primary reinforcer, and guiding action selection to optimal choices. Flexible responding has been evaluated extensively using reinforcer devaluation tasks. Performance on this task relies upon amygdala, Areas 11 and 13 of orbitofrontal cortex (OFC), and mediodorsal thalamus (MD). Differential contributions of amygdala and Areas 11 and 13 of OFC to specific sub-processes have been established, but the role of MD in these sub-processes is unknown. Pharmacological inactivation of the macaque MD during specific phases of this task revealed that MD is required for reward valuation and action selection. This profile is unique, differing from both amygdala and subregions of the OFC.


Subject(s)
Behavior, Animal , Goals , Thalamus/physiology , Animals , Behavior, Animal/drug effects , Kynurenic Acid/pharmacology , Macaca , Male , Thalamus/drug effects , Time Factors
9.
Epilepsia ; 58(9): 1593-1602, 2017 09.
Article in English | MEDLINE | ID: mdl-28691158

ABSTRACT

OBJECTIVE: Although drugs targeting the cannabinoid system (e.g., CB1 receptor agonists) display anticonvulsant efficacy in adult animal models of seizures/epilepsy, they remain unexplored in developing animal models. However, cannabinoid system functions emerge early in development, providing a rationale for targeting this system in neonates. We examined the therapeutic potential of drugs targeting the cannabinoid system in three seizure models in developing rats. METHODS: Postnatal day (P) 10, Sprague-Dawley rat pups were challenged with the chemoconvulsant methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) or pentylenetetrazole (PTZ), after treatment with either CB1/2 mixed agonist (WIN 55,212-2), CB1 agonist (arachidonyl-2'-chloroethylamide [ACEA]), CB2 agonist (HU-308), CB1 antagonist (AM-251), CB2 antagonist (AM-630), fatty acid amide hydrolase inhibitor (URB-597), or G protein-coupled receptor 55 agonist (O-1602). P20 Sprague-Dawley pups were challenged with DMCM after treatment with WIN, ACEA, or URB. Finally, after pretreatment with WIN, P10 Sprague-Dawley rats were challenged against acute hypoxia-induced seizures. RESULTS: The mixed CB1/2 agonist and the CB1-specific agonist, but no other drugs, displayed anticonvulsant effects against clonic seizures in the DMCM model. By contrast, both CB1 and CB2 antagonism increased seizure severity. Similarly, we found that the CB1/2 agonist displayed antiseizure efficacy against acute hypoxia-induced seizures (automatisms, clonic and tonic-clonic seizures) and tonic-clonic seizures evoked by PTZ. Anticonvulsant effects were seen in P10 animals but not P20 animals. SIGNIFICANCE: Early life seizures represent a significant cause of morbidity, with 30-40% of infants and children with epilepsy failing to achieve seizure remission with current pharmacotherapy. Identification of new therapies for neonatal/infantile epilepsy syndromes is thus of high priority. These data indicate that the anticonvulsant action of the CB system is specific to CB1 receptor activation during early development and provide justification for further examination of CB1 receptor agonists as novel antiepileptic drugs targeting epilepsy in infants and children.


Subject(s)
Anticonvulsants/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Seizures/drug therapy , Animals , Animals, Newborn , Disease Models, Animal , Female , Male , Rats , Rats, Sprague-Dawley
10.
Exp Neurol ; 283(Pt A): 404-12, 2016 09.
Article in English | MEDLINE | ID: mdl-27404844

ABSTRACT

Temporal lobe epilepsy is the most common form of medically-intractable epilepsy. While seizures in TLE originate in structures such as hippocampus, amygdala, and temporal cortex, they propagate through a crucial relay: the midline/intralaminar thalamus. Prior studies have shown that pharmacological inhibition of midline thalamus attenuates limbic seizures. Here, we examined a recently developed technology, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), as a means of chemogenetic silencing to attenuate limbic seizures. Adult, male rats were electrically kindled from the amygdala, and injected with virus coding for inhibitory (hM4Di) DREADDs into the midline/intralaminar thalamus. When treated with the otherwise inert ligand Clozapine-N-Oxide (CNO) at doses of 2.5, 5, and 10mg/kg, electrographic and behavioral seizure manifestations were suppressed in comparison to vehicle. At higher doses, we found complete blockade of seizure activity in a subset of subjects. CNO displayed a sharp time-response profile, with significant seizure attenuation seen 20-30min post injection, in comparison to 10 and 40min post injection. Seizures in animals injected with a control vector (i.e., no DREADD) were unaffected by CNO administration. These data underscore the crucial role of the midline/intralaminar thalamus in the propagation of seizures, specifically in the amygdala kindling model, and provide validation of chemogenetic silencing of limbic seizures.


Subject(s)
Amygdala/physiopathology , Intralaminar Thalamic Nuclei/physiology , Kindling, Neurologic/physiology , Midline Thalamic Nuclei/physiology , Seizures/drug therapy , Analysis of Variance , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Clozapine/analogs & derivatives , Clozapine/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Electric Stimulation/adverse effects , Evoked Potentials/physiology , Intralaminar Thalamic Nuclei/drug effects , Male , Maze Learning/drug effects , Midline Thalamic Nuclei/drug effects , Rats , Rats, Sprague-Dawley , Seizures/etiology
11.
Neurobiol Dis ; 87: 102-15, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26721319

ABSTRACT

Because sites of seizure origin may be unknown or multifocal, identifying targets from which activation can suppress seizures originating in diverse networks is essential. We evaluated the ability of optogenetic activation of the deep/intermediate layers of the superior colliculus (DLSC) to fill this role. Optogenetic activation of DLSC suppressed behavioral and electrographic seizures in the pentylenetetrazole (forebrain+brainstem seizures) and Area Tempestas (forebrain/complex partial seizures) models; this effect was specific to activation of DLSC, and not neighboring structures. DLSC activation likewise attenuated seizures evoked by gamma butyrolactone (thalamocortical/absence seizures), or acoustic stimulation of genetically epilepsy prone rates (brainstem seizures). Anticonvulsant effects were seen with stimulation frequencies as low as 5 Hz. Unlike previous applications of optogenetics for the control of seizures, activation of DLSC exerted broad-spectrum anticonvulsant actions, attenuating seizures originating in diverse and distal brain networks. These data indicate that DLSC is a promising target for optogenetic control of epilepsy.


Subject(s)
Epilepsy/physiopathology , Epilepsy/therapy , Neurons/physiology , Optogenetics/methods , Superior Colliculi/physiopathology , 4-Butyrolactone , Acoustic Stimulation , Animals , Brain Stem/physiopathology , Disease Models, Animal , Electrocorticography , Male , Pentylenetetrazole , Prosencephalon/physiopathology , Rats, Sprague-Dawley , Thalamus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL