Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Infect Dis ; 230(1): e43-e47, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052703

ABSTRACT

Dysbiosis of the vaginal microbiome poses a serious risk for sexual human immunodeficiency virus type 1 (HIV-1) transmission. Prevotella spp are abundant during vaginal dysbiosis and associated with enhanced HIV-1 susceptibility; however, underlying mechanisms remain unclear. Here, we investigated the direct effect of vaginal bacteria on HIV-1 susceptibility of vaginal CD4+ T cells. Notably, pre-exposure to Prevotella timonensis enhanced HIV-1 uptake by vaginal T cells, leading to increased viral fusion and enhanced virus production. Pre-exposure to antiretroviral inhibitors abolished P timonensis-enhanced infection. Our study shows that the vaginal microbiome directly affects mucosal CD4+ T-cell susceptibility, emphasizing importance of vaginal dysbiosis diagnosis and treatment.


Subject(s)
CD4-Positive T-Lymphocytes , Dysbiosis , HIV Infections , HIV-1 , Prevotella , Vagina , Humans , Female , Prevotella/isolation & purification , Dysbiosis/microbiology , Vagina/microbiology , Vagina/virology , Vagina/immunology , CD4-Positive T-Lymphocytes/immunology , HIV Infections/microbiology , HIV Infections/immunology , HIV Infections/virology , Disease Susceptibility , Microbiota , Virus Internalization
2.
J Adv Res ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37683725

ABSTRACT

INTRODUCTION: The human plasma glycoproteome holds enormous potential to identify personalized biomarkers for diagnostics. Glycoproteomics has matured into a technology for plasma N-glycoproteome analysis but further evolution towards clinical applications depends on the clinical validity and understanding of protein- and site-specific glycosylation changes in disease. OBJECTIVES: Here, we exploited the uniqueness of a patient cohort of genetic defects in well-defined glycosylation pathways to assess the clinical applicability of plasma N-glycoproteomics. METHODS: Comparative glycoproteomics was performed of blood plasma from 40 controls and 74 patients with 13 different genetic diseases that impact the protein N-glycosylation pathway. Baseline glycosylation in healthy individuals was compared to reference glycome and intact transferrin protein mass spectrometry data. Use of glycoproteomics data for biomarker discovery and sample stratification was evaluated by multivariate chemometrics and supervised machine learning. Clinical relevance of site-specific glycosylation changes were evaluated in the context of genetic defects that lead to distinct accumulation or loss of specific glycans. Integrated analysis of site-specific glycoproteome changes in disease was performed using chord diagrams and correlated with intact transferrin protein mass spectrometry data. RESULTS: Glycoproteomics identified 191 unique glycoforms from 58 unique peptide sequences of 34 plasma glycoproteins that span over 3 magnitudes of abundance in plasma. Chemometrics identified high-specificity biomarker signatures for each of the individual genetic defects with better stratification performance than the current diagnostic standard method. Bioinformatic analyses revealed site-specific glycosylation differences that could be explained by underlying glycobiology and protein-intrinsic factors. CONCLUSION: Our work illustrates the strong potential of plasma glycoproteomics to significantly increase specificity of glycoprotein biomarkers with direct insights in site-specific glycosylation changes to better understand the glycobiological mechanisms underlying human disease.

3.
Front Med (Lausanne) ; 10: 1105538, 2023.
Article in English | MEDLINE | ID: mdl-37614946

ABSTRACT

Background: House dust mite (HDM) is a major cause of respiratory allergic diseases. Dendritic cells (DCs) play a central role in orchestrating adaptive allergic immune responses. However, it remains unclear how DCs become activated by HDM. Biochemical functions of the major HDM allergens Der p 1 (cysteine protease) and Der p 2 (MD2-mimick) have been implicated to contribute to DC activation. Methods: We investigated the immune activating potential of HDM extract and its major allergens Der p 1 and Der p 2 using monocyte-derived DCs (moDCs). Maturation and activation markers were monitored by flow cytometry and cytokine production by ELISA. Allergen depletion and proteinase K digestion were used to investigate the involvement of proteins, and in particular of the major allergens. Inhibitors of spleen tyrosine kinase (Syk), Toll-like receptor 4 (TLR4) and of C-type lectin receptors (CLRs) were used to identify the involved receptors. The contribution of endotoxins in moDC activation was assessed by their removal from HDM extract. Results: HDM extract induced DC maturation and cytokine responses in contrast to the natural purified major allergens Der p 1 and Der p 2. Proteinase K digestion and removal of Der p 1 or Der p 2 did not alter the immune stimulatory capacity of HDM extract. Antibodies against the CLRs Dectin-1, Dectin-2, and DC-SIGN did not affect cytokine responses. In contrast, Syk inhibition partially reduced IL-6, IL-12 and completely blocked IL-10. Blocking TLR4 signaling reduced the HDM-induced IL-10 and IL-12p70 induction, but not IL-6, while endotoxin removal potently abolished the induced cytokine response. Conclusion: Our data strongly suggest that HDM-induced DC activation is neither dependent on Der p 1 nor Der p 2, but depend on Syk and TLR4 activation, which might suggest a crosstalk between Syk and TLR4 pathways. Our data highlight that endotoxins play a potent role in immune responses targeting HDM.

4.
iScience ; 26(8): 107257, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37520696

ABSTRACT

Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection.

5.
Front Immunol ; 14: 1125565, 2023.
Article in English | MEDLINE | ID: mdl-36949942

ABSTRACT

Zika virus is a member of the Flaviviridae family that has caused recent outbreaks associated with neurological malformations. Transmission of Zika virus occurs primarily via mosquito bite but also via sexual contact. Dendritic cells (DCs) and Langerhans cells (LCs) are important antigen presenting cells in skin and vaginal mucosa and paramount to induce antiviral immunity. To date, little is known about the first cells targeted by Zika virus in these tissues as well as subsequent dissemination of the virus to other target cells. We therefore investigated the role of DCs and LCs in Zika virus infection. Human monocyte derived DCs (moDCs) were isolated from blood and primary immature LCs were obtained from human skin and vaginal explants. Zika virus exposure to moDCs but not skin and vaginal LCs induced Type I Interferon responses. Zika virus efficiently infected moDCs but neither epidermal nor vaginal LCs became infected. Infection of a human full skin model showed that DC-SIGN expressing dermal DCs are preferentially infected over langerin+ LCs. Notably, not only moDCs but also skin and vaginal LCs efficiently transmitted Zika virus to target cells. Transmission by LCs was independent of direct infection of LCs. These data suggest that DCs and LCs are among the first target cells for Zika virus not only in the skin but also the genital tract. The role of vaginal LCs in dissemination of Zika virus from the vaginal mucosa further emphasizes the threat of sexual transmission and supports the investigation of prophylaxes that go beyond mosquito control.


Subject(s)
Zika Virus Infection , Zika Virus , Female , Humans , Dendritic Cells , Langerhans Cells , Epidermis/metabolism , Mucous Membrane , Zika Virus Infection/metabolism
6.
Sci Rep ; 13(1): 3283, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36841916

ABSTRACT

Vaginal inflammation increases the risk for sexual HIV-1 transmission but underlying mechanisms remain unclear. In this study we assessed the impact of immune activation on HIV-1 susceptibility of primary human vaginal Langerhans cells (LCs). Vaginal LCs isolated from human vaginal tissue expressed a broad range of TLRs and became activated after exposure to both viral and bacterial TLR ligands. HIV-1 replication was restricted in immature vaginal LCs as only low levels of infection could be detected. Notably, activation of immature vaginal LCs by bacterial TLR ligands increased HIV-1 infection, whereas viral TLR ligands were unable to induce HIV-1 replication in vaginal LCs. Furthermore, mature vaginal LCs transmitted HIV-1 to CD4 T cells. This study emphasizes the role for vaginal LCs in protection against mucosal HIV-1 infection, which is abrogated upon activation. Moreover, our data suggest that bacterial STIs can increase the risk of HIV-1 acquisition in women.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Sexually Transmitted Diseases , Humans , Female , Langerhans Cells , HIV-1/physiology , Ligands
7.
EMBO J ; 41(19): e110629, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35968812

ABSTRACT

Dysbiosis of vaginal microbiota is associated with increased HIV-1 acquisition, but the underlying cellular mechanisms remain unclear. Vaginal Langerhans cells (LCs) protect against mucosal HIV-1 infection via autophagy-mediated degradation of HIV-1. As LCs are in continuous contact with bacterial members of the vaginal microbiome, we investigated the impact of commensal and dysbiosis-associated vaginal (an)aerobic bacterial species on the antiviral function of LCs. Most of the tested bacteria did not affect the HIV-1 restrictive function of LCs. However, Prevotella timonensis induced a vast uptake of HIV-1 by vaginal LCs. Internalized virus remained infectious for days and uptake was unaffected by antiretroviral drugs. P. timonensis-exposed LCs efficiently transmitted HIV-1 to target cells both in vitro and ex vivo. Additionally, P. timonensis exposure enhanced uptake and transmission of the HIV-1 variants that establish infection after sexual transmission, the so-called Transmitted Founder variants. Our findings, therefore, suggest that P. timonensis might set the stage for enhanced HIV-1 susceptibility during vaginal dysbiosis and advocate targeted treatment of P. timonensis during bacterial vaginosis to limit HIV-1 infection.


Subject(s)
HIV Infections , HIV-1 , Antiviral Agents , Dysbiosis , Female , Humans , Langerhans Cells , Prevotella
8.
J Leukoc Biol ; 112(2): 289-298, 2022 08.
Article in English | MEDLINE | ID: mdl-34982481

ABSTRACT

Pathogens trigger multiple pattern recognition receptors (PRRs) that together dictate innate and adaptive immune responses. Understanding the crosstalk between PRRs is important to enhance vaccine efficacy. Abortive HIV-1 RNA transcripts are produced during acute and chronic HIV-1 infection and are known ligands for different PRRs, leading to antiviral and proinflammatory responses. Here, we have investigated the crosstalk between responses induced by these 58 nucleotide-long HIV-1 RNA transcripts and different TLR ligands. Costimulation of dendritic cells (DCs) with abortive HIV-1 RNA and TLR7/8 agonist R848, but not other TLR agonists, resulted in enhanced antiviral type I IFN responses as well as adaptive immune responses via the induction of DC-mediated T helper 1 (TH 1) responses and IFNγ+ CD8+ T cells. Our data underscore the importance of crosstalk between abortive HIV-1 RNA and R848-induced signaling for the induction of effective antiviral immunity.


Subject(s)
HIV-1 , Adjuvants, Immunologic , Antiviral Agents , CD8-Positive T-Lymphocytes , Dendritic Cells , HIV-1/physiology , Immunity, Innate , RNA , Receptors, Pattern Recognition
9.
Disabil Rehabil ; 44(23): 7116-7126, 2022 11.
Article in English | MEDLINE | ID: mdl-34607474

ABSTRACT

PURPOSE: To identify possible technological solutions that can contribute to stroke patients' participation at home. METHODS: In this qualitative case study, data on factors that negatively influenced participation at home were collected via semi-structured interviews with stroke patients (n = 6). Additionally, data on possible technologies to improve this participation were collected via a group interview with experts (n = 4). The domains "cognition, mobility, self-care, and getting along" (International Classification of Functioning, Disability and Health) guided the data collection and interpretation; open, axial and selective coding was part of the analysis. RESULTS: Patients reported 21 factors negatively influencing participation at home, including psychological, cognitive, and physical factors. Experts suggested technological solutions regarding these factors to increase participation of stroke patients; digital assistants, apps, and virtual reality were frequently mentioned. To facilitate the use of these technologies, experts indicated the importance of involving patients in their design. They also suggested that rehabilitation specialists and family members could support the uptake and use of technologies. CONCLUSIONS: Various technologies were identified by experts as having the potential to improve the participation of stroke patients in their homes. Future research may study the influence of these technologies on the actual participation of stroke patients at home.Implications for rehabilitationThe identified technological solutions can support rehabilitation specialists in guiding stroke patients towards technologies that can support a patient's participation at home.Rehabilitation specialists can be champions in introducing, recommending and promoting technologies to stroke patients and their families, as well as in training them to use technologies.Virtual reality as a technology can be part of rehabilitation, not only to train stroke patients in daily life activities but also to increase empathy and understanding in caregivers and carers on stroke impairments.Rehabilitation specialists can recommend technologies integrated in daily life and presented as general consumer goods; stroke patients are more likely to adopt these kind of technologies.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Home Environment , Stroke/psychology , Cognition , Technology
10.
J Pers Med ; 11(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34945728

ABSTRACT

Age-related macular degeneration (AMD) is a major cause of vision loss among the elderly in the Western world. The complement system has been identified as one of the main AMD disease pathways. We performed a comprehensive expression analysis of 32 complement proteins in plasma samples of 255 AMD patients and 221 control individuals using mass spectrometry-based semi-quantitative multiplex profiling. We detected significant associations of complement protein levels with age, sex and body-mass index (BMI), and potential associations of C-reactive protein, factor H related-2 (FHR-2) and collectin-11 with AMD. In addition, we confirmed previously described associations and identified new associations of AMD variants with complement levels. New associations include increased C4 levels for rs181705462 at the C2/CFB locus, decreased vitronectin (VTN) levels for rs11080055 at the TMEM97/VTN locus and decreased factor I levels for rs10033900 at the CFI locus. Finally, we detected significant associations between AMD-associated metabolites and complement proteins in plasma. The most significant complement-metabolite associations included increased high density lipoprotein (HDL) subparticle levels with decreased C3, factor H (FH) and VTN levels. The results of our study indicate that demographic factors, genetic variants and circulating metabolites are associated with complement protein components. We suggest that these factors should be considered to design personalized treatment approaches and to increase the success of clinical trials targeting the complement system.

11.
Am J Hum Genet ; 108(8): 1367-1384, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34260947

ABSTRACT

Age-related macular degeneration (AMD) is the principal cause of blindness in the elderly population. A strong effect on AMD risk has been reported for genetic variants at the CFH locus, encompassing complement factor H (CFH) and the complement-factor-H-related (CFHR) genes, but the underlying mechanisms are not fully understood. We aimed to dissect the role of factor H (FH) and FH-related (FHR) proteins in AMD in a cohort of 202 controls and 216 individuals with AMD. We detected elevated systemic levels of FHR-1 (p = 1.84 × 10-6), FHR-2 (p = 1.47 × 10-4), FHR-3 (p = 1.05 × 10-5) and FHR-4A (p = 1.22 × 10-2) in AMD, whereas FH concentrations remained unchanged. Common AMD genetic variants and haplotypes at the CFH locus strongly associated with FHR protein concentrations (e.g., FH p.Tyr402His and FHR-2 concentrations, p = 3.68 × 10-17), whereas the association with FH concentrations was limited. Furthermore, in an International AMD Genomics Consortium cohort of 17,596 controls and 15,894 individuals with AMD, we found that low-frequency and rare protein-altering CFHR2 and CFHR5 variants associated with AMD independently of all previously reported genome-wide association study (GWAS) signals (p = 5.03 × 10-3 and p = 2.81 × 10-6, respectively). Low-frequency variants in CFHR2 and CFHR5 led to reduced or absent FHR-2 and FHR-5 concentrations (e.g., p.Cys72Tyr in CFHR2 and FHR-2, p = 2.46 × 10-16). Finally, we showed localization of FHR-2 and FHR-5 in the choriocapillaris and in drusen. Our study identifies FHR proteins as key proteins in the AMD disease mechanism. Consequently, therapies that modulate FHR proteins might be effective for treating or preventing progression of AMD. Such therapies could target specific individuals with AMD on the basis of their genotypes at the CFH locus.


Subject(s)
Complement C3b Inactivator Proteins/metabolism , Complement Factor H/genetics , Complement System Proteins/metabolism , Genetic Predisposition to Disease , Haplotypes , Macular Degeneration/pathology , Polymorphism, Single Nucleotide , Cohort Studies , Complement C3b Inactivator Proteins/genetics , Complement System Proteins/genetics , Genome-Wide Association Study , Humans , Macular Degeneration/etiology , Macular Degeneration/metabolism
12.
Clin Transl Immunology ; 9(12): e1225, 2020.
Article in English | MEDLINE | ID: mdl-33318796

ABSTRACT

OBJECTIVES: Complement deficiencies are difficult to diagnose because of the variability of symptoms and the complexity of the diagnostic process. Here, we applied a novel 'complementomics' approach to study the impact of various complement deficiencies on circulating complement levels. METHODS: Using a quantitative multiplex mass spectrometry assay, we analysed 44 peptides to profile 34 complement proteins simultaneously in 40 healthy controls and 83 individuals with a diagnosed deficiency or a potential pathogenic variant in 14 different complement proteins. RESULTS: Apart from confirming near or total absence of the respective protein in plasma of complement-deficient patients, this mass spectrometry-based profiling method led to the identification of additional deficiencies. In many cases, partial depletion of the pathway up- and/or downstream of the absent protein was measured. This was especially found in patients deficient for complement inhibitors, such as angioedema patients with a C1-inhibitor deficiency. The added value of complementomics was shown in three patients with poorly defined complement deficiencies. CONCLUSION: Our study shows the potential clinical utility of profiling circulating complement proteins as a comprehensive read-out of various complement deficiencies. Particularly, our approach provides insight into the intricate interplay between complement proteins due to functional coupling, which contributes to the better understanding of the various disease phenotypes and improvement of care for patients with complement-mediated diseases.

13.
Front Immunol ; 11: 8, 2020.
Article in English | MEDLINE | ID: mdl-32038656

ABSTRACT

Strong innate and adaptive immune responses are paramount in combating viral infections. Dendritic cells (DCs) detect viral infections via cytosolic RIG-I like receptors (RLRs) RIG-I and MDA5 leading to MAVS-induced immunity. The DEAD-box RNA helicase DDX3 senses abortive human immunodeficiency virus 1 (HIV-1) transcripts and induces MAVS-dependent type I interferon (IFN) responses, suggesting that abortive HIV-1 RNA transcripts induce antiviral immunity. Little is known about the induction of antiviral immunity by DDX3-ligand abortive HIV-1 RNA. Here we synthesized a 58 nucleotide-long capped RNA (HIV-1 Cap-RNA58) that mimics abortive HIV-1 RNA transcripts. HIV-1 Cap-RNA58 induced potent type I IFN responses in monocyte-derived DCs, monocytes, macrophages and primary CD1c+ DCs. Compared with RLR agonist poly-I:C, HIV-1 Cap-RNA58 induced comparable levels of type I IFN responses, identifying HIV-1 Cap-RNA58 as a potent trigger of antiviral immunity. In monocyte-derived DCs, HIV-1 Cap-RNA58 activated the transcription factors IRF3 and NF-κB. Moreover, HIV-1 Cap-RNA58 induced DC maturation and the expression of pro-inflammatory cytokines. HIV-1 Cap-RNA58-stimulated DCs induced proliferation of CD4+ and CD8+ T cells and differentiated naïve T helper (TH) cells toward a TH2 phenotype. Importantly, treatment of DCs with HIV-1 Cap-RNA58 resulted in an efficient antiviral innate immune response that reduced ongoing HIV-1 replication in DCs. Our data strongly suggest that HIV-1 Cap-RNA58 induces potent innate and adaptive immune responses, making it an interesting addition in vaccine design strategies.


Subject(s)
Adaptive Immunity , HIV Infections/immunology , HIV-1/genetics , Host Microbial Interactions/immunology , Immunity, Innate , RNA, Viral/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/virology , HIV Infections/virology , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Macrophages/immunology , Macrophages/virology , Monocytes/immunology , Monocytes/virology , NF-kappa B/metabolism , RNA, Viral/chemical synthesis , RNA, Viral/immunology , Signal Transduction/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Transcription, Genetic
14.
J Reprod Immunol ; 138: 103085, 2020 04.
Article in English | MEDLINE | ID: mdl-32004804

ABSTRACT

Dysbiosis of the vaginal microbiome as a result of overgrowth of anaerobic bacteria leads to bacterial vaginosis (BV) which is associated with increased inflammation in the genital mucosa. Moreover, BV increases susceptibility to sexual transmitted infections (STIs) and is associated with adverse pregnancy outcomes. It remains unclear how specific vaginal aerobic and anaerobic bacteria affect health and disease. We selected different vaginal bacteria ranging from true commensals to species associated with dysbiosis and investigated their effects on activation of dendritic cells (DCs). Commensal Lactobacilli crispatus did not induce DC maturation nor led to production of pro-inflammatory cytokines. In contrast, BV-associated bacteria Megasphaera elsdenii and Prevotella timonensis induced DC maturation and increased levels of pro-inflammatory cytokines. Notably, DCs stimulated with Prevotella timonensis suppressed Th2 responses and induced Th1 skewing, typically associated with preterm birth. In contrast, Lactobacillus crispatus and Megasphaera elsdenii did not affect Th cell polarization. These results strongly indicate that the interaction of vaginal bacteria with mucosal DCs determines mucosal inflammation and we have identified the anaerobic bacterium Prevotella timonensis as a strong inducer of inflammatory responses. Specifically targeting these inflammation-inducing bacteria might be a therapeutic strategy to prevent BV and associated risks in STI susceptibility and preterm birth.


Subject(s)
Dendritic Cells/immunology , Dysbiosis/complications , Megasphaera elsdenii/immunology , Prevotella/immunology , Vaginosis, Bacterial/immunology , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/metabolism , Dysbiosis/immunology , Dysbiosis/microbiology , Female , Humans , Inflammation Mediators/metabolism , Leukocytes, Mononuclear , Prevotella/isolation & purification , Primary Cell Culture , Vagina/cytology , Vagina/immunology , Vagina/microbiology , Vaginosis, Bacterial/microbiology
15.
EBioMedicine ; 45: 303-313, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31262714

ABSTRACT

BACKGROUND: The complement system is a central component of the innate immune system. Constitutive biosynthesis of complement proteins is essential for homeostasis. Dysregulation as a consequence of genetic or environmental cues can lead to inflammatory syndromes or increased susceptibility to infection. However, very little is known about steady state levels in children or its kinetics during infection. METHODS: With a newly developed multiplex mass spectrometry-based method we analyzed the levels of 32 complement proteins in healthy individuals and in a group of pediatric patients infected with bacterial or viral pathogens. FINDINGS: In plasma from young infants we found reduced levels of C4BP, ficolin-3, factor B, classical pathway components C1QA, C1QB, C1QC, C1R, and terminal pathway components C5, C8, C9, as compared to healthy adults; whereas the majority of complement regulating (inhibitory) proteins reach adult levels at very young age. Both viral and bacterial infections in children generally lead to a slight overall increase in complement levels, with some exceptions. The kinetics of complement levels during invasive bacterial infections only showed minor changes, except for a significant increase and decrease of CRP and clusterin, respectively. INTERPRETATION: The combination of lower levels of activating and higher levels of regulating complement proteins, would potentially raise the threshold of activation, which might lead to suppressed complement activation in the first phase of life. There is hardly any measurable complement consumption during bacterial or viral infection. Altogether, expression of the complement proteins appears surprisingly stable, which suggests that the system is continuously replenished. FUND: European Union's Horizon 2020, project PERFORM, grant agreement No. 668303.


Subject(s)
Communicable Diseases/immunology , Complement Activation/immunology , Complement System Proteins/chemistry , Inflammation/immunology , Adolescent , Adult , C-Reactive Protein/genetics , C-Reactive Protein/immunology , Child , Child, Preschool , Clusterin/genetics , Clusterin/immunology , Communicable Diseases/genetics , Complement Activation/genetics , Complement System Proteins/classification , Complement System Proteins/isolation & purification , Female , Homeostasis , Humans , Infant , Infant, Newborn , Inflammation/genetics , Male , Mass Spectrometry , Middle Aged , Young Adult
17.
Cancer Res ; 77(7): 1649-1661, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28108517

ABSTRACT

SDHD encodes subunit D of the succinate dehydrogenase complex, an integral membrane protein. Across cancer types, recurrent SDHD promoter mutations were reported to occur exclusively in melanomas, at a frequency of 4% to 5%. These mutations are predicted to disrupt consensus ETS transcription factor-binding sites and are correlated with both reduced SDHD gene expression and poor prognosis. However, the consequence of these mutations on SDHD expression in melanoma is still unclear. Here, we found that expression of SDHD in melanoma correlated with the expression of multiple ETS transcription factors, particularly in SDHD promoter wild-type samples. Consistent with the predicted loss of ETS transcription factor binding, we observed that recurrent hotspot mutations resulted in decreased luciferase activity in reporter assays. Furthermore, we demonstrated specific GABPA and GABPB1 binding to probes containing the wild-type promoter sequences, with binding disrupted by the SDHD hotspot promoter mutations in both quantitative mass spectrometry and band-shift experiments. Finally, using siRNA-mediated knockdown across multiple melanoma cell lines, we determined that loss of GABPA resulted in reduced SDHD expression at both RNA and protein levels. These data are consistent with a key role for GABPA/B1 as the critical ETS transcription factors deregulating SDHD expression in the context of highly recurrent promoter mutations in melanoma and warrant a detailed search for other recurrent promoter mutations that create or disrupt GABPA consensus sequences. Cancer Res; 77(7); 1649-61. ©2017 AACR.


Subject(s)
GA-Binding Protein Transcription Factor/metabolism , Melanoma/genetics , Mutation , Promoter Regions, Genetic , Succinate Dehydrogenase/genetics , Cell Line, Tumor , Humans , Melanoma/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Tandem Mass Spectrometry
18.
Nat Immunol ; 18(2): 225-235, 2017 02.
Article in English | MEDLINE | ID: mdl-28024153

ABSTRACT

The mechanisms by which human immunodeficiency virus 1 (HIV-1) avoids immune surveillance by dendritic cells (DCs), and thereby prevents protective adaptive immune responses, remain poorly understood. Here we showed that HIV-1 actively arrested antiviral immune responses by DCs, which contributed to efficient HIV-1 replication in infected individuals. We identified the RNA helicase DDX3 as an HIV-1 sensor that bound abortive HIV-1 RNA after HIV-1 infection and induced DC maturation and type I interferon responses via the signaling adaptor MAVS. Notably, HIV-1 recognition by the C-type lectin receptor DC-SIGN activated the mitotic kinase PLK1, which suppressed signaling downstream of MAVS, thereby interfering with intrinsic host defense during HIV-1 infection. Finally, we showed that PLK1-mediated suppression of DDX3-MAVS signaling was a viral strategy that accelerated HIV-1 replication in infected individuals.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Dendritic Cells/virology , HIV Infections/immunology , HIV-1/physiology , Immune Evasion , Immunity , Macrophages/virology , Adaptor Proteins, Signal Transducing/genetics , Cell Extracts , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cohort Studies , DEAD-box RNA Helicases/metabolism , Dendritic Cells/immunology , Gene Expression Regulation, Viral , HEK293 Cells , HIV Infections/virology , Host-Pathogen Interactions/genetics , Humans , Interferon-beta/blood , Macrophages/immunology , Polymorphism, Single Nucleotide , RNA, Viral/immunology , RNA, Viral/metabolism , Receptors, Pattern Recognition/metabolism , Signal Transduction , Viral Load/genetics
19.
Nature ; 540(7633): 448-452, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27919079

ABSTRACT

The most prevalent route of HIV-1 infection is across mucosal tissues after sexual contact. Langerhans cells (LCs) belong to the subset of dendritic cells (DCs) that line the mucosal epithelia of vagina and foreskin and have the ability to sense and induce immunity to invading pathogens. Anatomical and functional characteristics make LCs one of the primary targets of HIV-1 infection. Notably, LCs form a protective barrier against HIV-1 infection and transmission. LCs restrict HIV-1 infection through the capture of HIV-1 by the C-type lectin receptor Langerin and subsequent internalization into Birbeck granules. However, the underlying molecular mechanism of HIV-1 restriction in LCs remains unknown. Here we show that human E3-ubiquitin ligase tri-partite-containing motif 5α (TRIM5α) potently restricts HIV-1 infection of LCs but not of subepithelial DC-SIGN+ DCs. HIV-1 restriction by TRIM5α was thus far considered to be reserved to non-human primate TRIM5α orthologues, but our data strongly suggest that human TRIM5α is a cell-specific restriction factor dependent on C-type lectin receptor function. Our findings highlight the importance of HIV-1 binding to Langerin for the routeing of HIV-1 into the human TRIM5α-mediated restriction pathway. TRIM5α mediates the assembly of an autophagy-activating scaffold to Langerin, which targets HIV-1 for autophagic degradation and prevents infection of LCs. By contrast, HIV-1 binding to DC-SIGN+ DCs leads to disassociation of TRIM5α from DC-SIGN, which abrogates TRIM5α restriction. Thus, our data strongly suggest that restriction by human TRIM5α is controlled by C-type-lectin-receptor-dependent uptake of HIV-1, dictating protection or infection of human DC subsets. Therapeutic interventions that incorporate C-type lectin receptors and autophagy-targeting strategies could thus provide cell-mediated resistance to HIV-1 in humans.


Subject(s)
Antigens, CD/metabolism , Autophagy , Carrier Proteins/metabolism , HIV-1/physiology , Langerhans Cells/metabolism , Langerhans Cells/virology , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Receptors, HIV/metabolism , Antiviral Restriction Factors , Cell Adhesion Molecules/metabolism , Cell Line , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/transmission , HIV-1/immunology , Host-Pathogen Interactions , Humans , Immunity, Mucosal , Langerhans Cells/cytology , Langerhans Cells/immunology , Receptors, Cell Surface/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
20.
Glycoconj J ; 33(3): 345-58, 2016 06.
Article in English | MEDLINE | ID: mdl-26739145

ABSTRACT

Abnormal protein glycosylation is observed in many common disorders like cancer, inflammation, Alzheimer's disease and diabetes. However, the actual use of this information in clinical diagnostics is still very limited. Information is usually derived from analysis of total serum N-glycan profiling methods, whereas the current use of glycoprotein biomarkers in the clinical setting is commonly based on protein levels. It can be envisioned that combining protein levels and their glycan isoforms would increase specificity for early diagnosis and therapy monitoring. To establish diagnostic assays, based on the mass spectrometric analysis of protein-specific glycosylation abnormalities, still many technical improvements have to be made. In addition, clinical validation is equally important as well as an understanding of the genetic and environmental factors that determine the protein-specific glycosylation abnormalities. Important lessons can be learned from the group of monogenic disorders in the glycosylation pathway, the Congenital Disorders of Glycosylation (CDG). Now that more and more genetic defects are being unraveled, we start to learn how genetic factors influence glycomics profiles of individual and total serum proteins. Although only in its initial stages, such studies suggest the importance to establish diagnostic assays for protein-specific glycosylation profiling, and the need to look beyond the single glycoprotein diagnostic test. Here, we review progress in and lessons from genetic disease, and review the increasing opportunities of mass spectrometry to analyze protein glycosylation in the clinical diagnostic setting. Furthermore, we will discuss the possibilities to expand current CDG diagnostics and how this can be used to approach glycoprotein biomarkers for more common diseases.


Subject(s)
Congenital Disorders of Glycosylation/blood , Glycoproteins/chemistry , Mass Spectrometry/methods , Molecular Diagnostic Techniques/methods , Biomarkers/blood , Biomarkers/chemistry , Congenital Disorders of Glycosylation/therapy , Glycoproteins/blood , Humans
SELECTION OF CITATIONS
SEARCH DETAIL