Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Front Neuroanat ; 16: 866848, 2022.
Article in English | MEDLINE | ID: mdl-35847829

ABSTRACT

Multiple studies have demonstrated finger somatotopy in humans and other primates using a variety of brain mapping techniques including functional magnetic resonance imaging (fMRI). Here, we review the literature to better understand the reliability of fMRI for mapping the somatosensory cortex. We have chosen to focus on the hand and fingers as these areas have the largest representation and have been the subject of the largest number of somatotopic mapping experiments. Regardless of the methods used, individual finger somatosensory maps were found to be organized across Brodmann areas (BAs) 3b, 1, and 2 in lateral-to-medial and inferior-to-superior fashion moving from the thumb to the pinky. However, some consistent discrepancies are found that depend principally on the method used to stimulate the hand and fingers. Therefore, we suggest that a comparative analysis of different types of stimulation be performed to address the differences described in this review.

2.
RSC Adv ; 11(50): 31717-31726, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496840

ABSTRACT

X-ray excited optical luminescence from nanophosphors can be used to selectively generate light in tissue for imaging and stimulating light-responsive materials and cells. Herein, we synthesized X-ray scintillating NaGdF4:Eu and Tb nanophosphors via co-precipitate and hydrothermal methods, encapsulated with silica, functionalized with biotin, and characterized by X-ray excited optical luminescence spectroscopy and imaging. The nanophosphors synthesized by co-precipitate method were ∼90 and ∼106 nm in diameter, respectively, with hydrothermally synthesized particles showing the highest luminescence intensity. More importantly, we investigated the effect of thermal annealing/calcination on the X-ray excited luminescence spectra and intensity. At above 1000 °C, the luminescence intensity increased, but particles fused together. Coating with a 15 nm thick silica shell prevented particle fusion and enabled silane-based chemical functionalization, although luminescence decreased largely due to the increased mass of non-luminescent material. We observed an increase in luminesce intensity with temperature until at 400 °C. At above 600 °C, NaGdF4:Eu@SiO2 converts to NaGd9Si6O26:Eu, an X-ray scintillator brighter than annealed NPs at 400 °C and dimmer than NPs synthesized using the hydrothermal method. The particles generate light through tissue and can be selectively excited using a focused X-ray source for imaging and light generation applications. The particles also act as MRI contrast agents for multi-modal localization.

3.
J Control Release ; 324: 172-180, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32376461

ABSTRACT

There is an ongoing need for noninvasive tools to manipulate brain activity with molecular, spatial and temporal specificity. Here we have investigated the use of MRI-visible, albumin-based nanoclusters for noninvasive, localized and temporally specific drug delivery to the rat brain. We demonstrated that IV injected nanoclusters could be deposited into target brain regions via focused ultrasound facilitated blood brain barrier opening. We showed that nanocluster location could be confirmed in vivo with MRI. Additionally, following confirmation of nanocluster delivery, release of the nanocluster payload into brain tissue can be triggered by a second focused ultrasound treatment performed without circulating microbubbles. Release of glutamate from nanoclusters in vivo caused enhanced c-Fos expression, indicating that the loading capacity of the nanoclusters is sufficient to induce neuronal activation. This novel technique for noninvasive stereotactic drug delivery to the brain with temporal specificity could provide a new way to study brain circuits in vivo preclinically with high relevance for clinical translation.


Subject(s)
Blood-Brain Barrier , Pharmaceutical Preparations , Albumins , Animals , Brain/diagnostic imaging , Drug Delivery Systems , Magnetic Resonance Imaging , Microbubbles , Rats
4.
Front Neurosci ; 14: 598482, 2020.
Article in English | MEDLINE | ID: mdl-33488347

ABSTRACT

Functional magnetic resonance imaging (fMRI) was used to estimate neuronal activity in the primary somatosensory cortex of six participants undergoing cutaneous tactile stimulation on skin areas spread across the entire body. Differences between the accepted somatotopic maps derived from Penfield's work and those generated by this fMRI study were sought, including representational transpositions or replications across the cortex. MR-safe pneumatic devices mimicking the action of a Wartenberg wheel supplied touch stimuli in eight areas. Seven were on the left side of the body: foot, lower, and upper leg, trunk beneath ribcage, anterior forearm, middle fingertip, and neck above the collarbone. The eighth area was the glabella. Activation magnitude was estimated as the maximum cross-correlation coefficient at a certain phase shift between ideal time series and measured blood oxygen level dependent (BOLD) time courses on the cortical surface. Maximally correlated clusters associated with each cutaneous area were calculated, and cortical magnification factors were estimated. Activity correlated to lower limb stimulation was observed in the paracentral lobule and superomedial postcentral region. Correlations to upper extremity stimulation were observed in the postcentral area adjacent to the motor hand knob. Activity correlated to trunk, face and neck stimulation was localized in the superomedial one-third of the postcentral region, which differed from Penfield's cortical homunculus.

SELECTION OF CITATIONS
SEARCH DETAIL