Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3818, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740760

ABSTRACT

The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.


Subject(s)
Kidney , Organ Preservation , Perfusion , Humans , Kidney/metabolism , Organ Preservation/methods , Perfusion/methods , Kidney Transplantation , Male , Organ Preservation Solutions , Female , Middle Aged , Cell-Free System , Citric Acid Cycle , Adult , Nutrients/metabolism , Lipidomics/methods , Aged
2.
Am J Transplant ; 19(5): 1328-1343, 2019 05.
Article in English | MEDLINE | ID: mdl-30506641

ABSTRACT

The bioengineering of a replacement kidney has been proposed as an approach to address the growing shortage of donor kidneys for the treatment of chronic kidney disease. One approach being investigated is the recellularization of kidney scaffolds. In this study, we present several key advances toward successful re-endothelialization of whole kidney matrix scaffolds from both rodents and humans. Based on the presence of preserved glycosoaminoglycans within the decelullarized kidney scaffold, we show improved localization of delivered endothelial cells after preloading of the vascular matrix with vascular endothelial growth factor and angiopoietin 1. Using a novel simultaneous arteriovenous delivery system, we report the complete re-endothelialization of the kidney vasculature, including the glomerular and peritubular capillaries, using human inducible pluripotent stem cell -derived endothelial cells. Using this source of endothelial cells, it was possible to generate sufficient endothelial cells to recellularize an entire human kidney scaffold, achieving efficient cell delivery, adherence, and endothelial cell proliferation and survival. Moreover, human re-endothelialized scaffold could, in contrast to the non-re-endothelialized human scaffold, be fully perfused with whole blood. These major advances move the field closer to a human bioengineered kidney.


Subject(s)
Bioengineering , Endothelium, Vascular/cytology , Extracellular Matrix/physiology , Induced Pluripotent Stem Cells/cytology , Kidney Transplantation/methods , Kidney/cytology , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Endothelium, Vascular/metabolism , Glycosaminoglycans/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Kidney/metabolism , Rats , Rats, Inbred Lew
3.
Stem Cells Transl Med ; 8(4): 375-382, 2019 04.
Article in English | MEDLINE | ID: mdl-30537441

ABSTRACT

All tissues are surrounded by a mixture of noncellular matrix components, that not only provide physical and mechanical support to cells, but also mediate biochemical signaling between cells. The extracellular matrix (ECM) of endothelial cells, also known as the perivascular matrix, forms an organ specific vascular niche that orchestrates mechano-, growth factor, and angiocrine signaling required for tissue homeostasis and organ repair. This concise review describes how this perivascular ECM functions as a signaling platform and how this knowledge can impact the field of regenerative medicine, for example, when designing artificial matrices or using decellularized scaffolds from organs. Stem Cells Translational Medicine 2019;8:375-382.


Subject(s)
Endothelial Cells/cytology , Endothelial Cells/physiology , Extracellular Matrix/physiology , Homeostasis/physiology , Animals , Humans , Regenerative Medicine/methods , Tissue Engineering/methods , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL