Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
J Med Chem ; 67(16): 13788-13801, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39088801

ABSTRACT

Modulating the kappa-opioid receptor (KOR) is a promising strategy for treating various human diseases. KOR agonists show potential for treating pain, pruritus, and epilepsy, while KOR antagonists show potential for treating depression, anxiety, and addiction. The diterpenoid Salvinorin A (SalA), a secondary metabolite of Salvia divinorum, is a potent and selective KOR agonist. Unlike typical opioids, SalA lacks a basic nitrogen, which encouraged us to search for nonbasic KOR ligands. Through structure-based virtual screening using 3D pharmacophore models based on the binding mode of SalA, we identified novel, nonbasic, potent, and selective KOR agonists. In vitro studies confirmed two virtual hits, SalA-VS-07 and SalA-VS-08, as highly selective for the KOR and showing G protein-biased KOR agonist activity. Both KOR ligands share a novel spiro-moiety and a nonbasic scaffold. Our findings provide novel starting points for developing therapeutics aimed at treating pain and other conditions in which KOR is a central player.


Subject(s)
Diterpenes, Clerodane , Receptors, Opioid, kappa , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/chemistry , Humans , Structure-Activity Relationship , Animals , Ligands , Molecular Docking Simulation , Drug Discovery , Models, Molecular , HEK293 Cells , Cricetulus , CHO Cells
2.
EMBO Mol Med ; 16(7): 1630-1656, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38877290

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is a key player in atopic diseases, which has sparked great interest in therapeutically targeting TSLP. Yet, no small-molecule TSLP inhibitors exist due to the challenges of disrupting the protein-protein interaction between TSLP and its receptor. Here, we report the development of small-molecule TSLP receptor inhibitors using virtual screening and docking of >1,000,000 compounds followed by iterative chemical synthesis. BP79 emerged as our lead compound that effectively abrogates TSLP-triggered cytokines at low micromolar concentrations. For in-depth analysis, we developed a human atopic disease drug discovery platform using multi-organ chips. Here, topical application of BP79 onto atopic skin models that were co-cultivated with lung models and Th2 cells effectively suppressed immune cell infiltration and IL-13, IL-4, TSLP, and periostin secretion, while upregulating skin barrier proteins. RNA-Seq analysis corroborate these findings and indicate protective downstream effects on the lungs. To the best of our knowledge, this represents the first report of a potent putative small molecule TSLPR inhibitor which has the potential to expand the therapeutic and preventive options in atopic diseases.


Subject(s)
Cytokines , Receptors, Cytokine , Thymic Stromal Lymphopoietin , Humans , Cytokines/metabolism , Receptors, Cytokine/metabolism , Receptors, Cytokine/antagonists & inhibitors , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Th2 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/metabolism , Animals , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Protein Binding/drug effects , Interleukin-4/metabolism , Skin/drug effects , Skin/metabolism , Skin/pathology , Lung/metabolism , Lung/drug effects , Lung/pathology , Molecular Docking Simulation
4.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792050

ABSTRACT

CYP2A7 is one of the most understudied human cytochrome P450 enzymes and its contributions to either drug metabolism or endogenous biosynthesis pathways are not understood, as its only known enzymatic activities are the conversions of two proluciferin probe substrates. In addition, the CYP2A7 gene contains four single-nucleotide polymorphisms (SNPs) that cause missense mutations and have minor allele frequencies (MAFs) above 0.5. This means that the resulting amino acid changes occur in the majority of humans. In a previous study, we employed the reference standard sequence (called CYP2A7*1 in P450 nomenclature). For the present study, we created another CYP2A7 sequence that contains all four amino acid changes (Cys311, Glu169, Gly479, and Arg274) and labeled it CYP2A7-WT. Thus, it was the aim of this study to identify new substrates and inhibitors of CYP2A7 and to compare the properties of CYP2A7-WT with CYP2A7*1. We found several new proluciferin probe substrates for both enzyme variants (we also performed in silico studies to understand the activity difference between CYP2A7-WT and CYP2A7*1 on specific substrates), and we show that while they do not act on the standard CYP2A6 substrates nicotine, coumarin, or 7-ethoxycoumarin, both can hydroxylate diclofenac (as can CYP2A6). Moreover, we found ketoconazole, 1-benzylimidazole, and letrozole to be CYP2A7 inhibitors.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Enzyme Inhibitors , Humans , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Polymorphism, Single Nucleotide , Substrate Specificity
5.
Nat Commun ; 15(1): 3537, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670939

ABSTRACT

Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) from Streptococcus pneumoniae, the main cause for bacterial pneumonia. Liberation of PLY during infection leads to compromised immune system and cytolytic cell death. Here, we report discovery, development, and validation of targeted small molecule inhibitors of PLY (pore-blockers, PB). PB-1 is a virtual screening hit inhibiting PLY-mediated hemolysis. Structural optimization provides PB-2 with improved efficacy. Cryo-electron tomography reveals that PB-2 blocks PLY-binding to cholesterol-containing membranes and subsequent pore formation. Scaffold-hopping delivers PB-3 with superior chemical stability and solubility. PB-3, formed in a protein-templated reaction, binds to Cys428 adjacent to the cholesterol recognition domain of PLY with a KD of 256 nM and a residence time of 2000 s. It acts as anti-virulence factor preventing human lung epithelial cells from PLY-mediated cytolysis and cell death during infection with Streptococcus pneumoniae and is active against the homologous Cys-containing CDC perfringolysin (PFO) as well.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Hemolysin Proteins , Hemolysis , Streptococcus pneumoniae , Streptolysins , Streptolysins/metabolism , Streptolysins/chemistry , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Streptococcus pneumoniae/drug effects , Bacterial Toxins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/antagonists & inhibitors , Hemolysis/drug effects , Hemolysin Proteins/metabolism , Hemolysin Proteins/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , A549 Cells , Cholesterol/metabolism , Cryoelectron Microscopy , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Virulence Factors/metabolism
6.
J Nat Prod ; 86(11): 2502-2513, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37939299

ABSTRACT

2-Alkylquinolones are a class of microbial natural products primarily produced in the Pseudomonas and Burkholderia genera that play a key role in modulating quorum sensing. Bacterial alkylquinolones were synthesized and then subjected to oxidative biotransformation using human cytochrome P450 enzyme CYP4F11, heterologously expressed in the fission yeast Schizosaccharomyces pombe. This yielded a range of hydroxylated and carboxylic acid derivatives which had undergone ω-oxidation of the 2-alkyl chain, the structures of which were determined by analysis of NMR and MS data. Oxidation efficiency depended on chain length, with a chain length of eight or nine carbon atoms proving optimal for high yields. Homology modeling suggested that Glu233 was relevant for binding, due to the formation of a hydrogen bond from the quinolone nitrogen to Glu233, and in this position only the longer alkyl chains could come close enough to the heme moiety for effective oxidation. In addition to the direct oxidation products, a number of esters were also isolated, which was attributed to the action of endogenous yeast enzymes on the newly formed ω-hydroxy-alkylquinolones. ω-Oxidation of the alkyl chain significantly reduced the antimicrobial and antibiofilm activity of the quinolones.


Subject(s)
Bacteria , Cytochrome P-450 Enzyme System , Humans , Oxidation-Reduction , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P450 Family 4/metabolism
7.
ChemMedChem ; 18(23): e202300305, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37845178

ABSTRACT

There are currently no small molecules clinically approved as immune checkpoint modulators. Besides possessing oral bioavailability, cell-penetrating capabilities and enhanced tumor penetration compared to monoclonal antibodies (mAbs), small molecules are amenable to pharmacokinetic optimization, which allows adopting flexible dosage regimens that may avoid immune-related adverse events associated with mAbs. The interaction of inducible co-stimulator (ICOS) with its ligand (ICOS-L) plays key roles in T-cell differentiation and activation of T-cell to B-cell functions. This study represents the development and validation of a virtual screening strategy to identify small molecules that bind a novel druggable binding pocket in human ICOS. We used a lipophilic canyon in the apo-structure of ICOS and the ICOS/ICOS-L interface individually as templates for molecular dynamics simulation to generate 3D pharmacophores subsequently used for virtual screening campaigns. Our strategy was successful finding a first-in-class small molecule ICOS binder (5P, KD value=108.08±26.76 µM) and validating biophysical screening platforms for ICOS-targeted small molecules. We anticipate that future structural optimization of 5P will result in the discovery of high affinity chemical ligands for ICOS.


Subject(s)
Pharmacophore , T-Lymphocytes , Humans , Inducible T-Cell Co-Stimulator Protein/metabolism , T-Lymphocytes/metabolism , Antibodies, Monoclonal
8.
Arch Pharm (Weinheim) ; 356(12): e2300387, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806764

ABSTRACT

Fingolimod, the prodrug of fingolimod-1-phosphate (F1P), was the first sphingosine-1-phosphate receptor (S1PR) modulator approved for multiple sclerosis. F1P unselectively targets all five S1PR subtypes. While agonism (functional antagonism via receptor internalization) at S1PR1 leads to the desired immune modulatory effects, agonism at S1PR3 is associated with cardiac adverse effects. This motivated the development of S1PR3 -sparing compounds and led to a second generation of S1PR1,5 -selective ligands like siponimod and ozanimod. Our method combines molecular dynamics simulations and three-dimensional pharmacophores (dynophores) and enables the elucidation of S1PR subtype-specific binding site characteristics, visualizing also subtle differences in receptor-ligand interactions. F1P and the endogenous ligand sphingosine-1-phosphate bind to the orthosteric pocket of all S1PRs, but show different binding mode dynamics, uncovering potential starting points for the development of subtype-specific ligands. Our study contributes to the mechanistic understanding of the selectivity profile of approved drugs like ozanimod and siponimod and pharmaceutical tool compounds like CYM5541.


Subject(s)
Fingolimod Hydrochloride , Receptors, Lysosphingolipid , Sphingosine-1-Phosphate Receptors , Receptors, Lysosphingolipid/metabolism , Ligands , Structure-Activity Relationship
9.
Molecules ; 28(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37894685

ABSTRACT

The aim of this study was to develop and optimize a chiral HPLC-MS/MS method for quantitative analysis of (R)-/(S)-salbutamol and (R)-/(S)-salbutamol-4'-O-sulfate in human urine to allow for bioanalytical quantitation of the targeted analytes and investigations of stereoselectivity in the sulfonation pathway of human phase Ⅱ metabolism. For analytical method development, a systematic screening of columns and mobile phases to develop a separation via enantiomerically selective high performance liquid chromatography was performed. Electrospray ionization settings were optimized via multiple-step screening and a full factorial design-of-experiment. Both approaches were performed matrix-assisted and the predicted values were compared. The full factorial design was superior in terms of prediction power and knowledge generation. Performing a longitudinal excretion study in one healthy volunteer allowed for the calculation of excretion rates for all four targeted analytes. For this proof-of-concept, either racemic salbutamol or enantiopure levosalbutamol was administered perorally or via inhalation, respectively. A strong preference for sulfonation of (R)-salbutamol for inhalation and peroral application was found in in vivo experiments. In previous studies phenol sulfotransferase 1A3 was described to be mainly responsible for salbutamol sulfonation in humans. Thus, in vitro and in silico investigations of the stereoselectivity of sulfotransferase 1A3 complemented the study and confirmed these findings.


Subject(s)
Albuterol , Tandem Mass Spectrometry , Humans , Albuterol/analysis , Albuterol/chemistry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Levalbuterol , Administration, Inhalation , Stereoisomerism
10.
Eur J Med Chem ; 260: 115771, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37657271

ABSTRACT

Tyrosinase, a copper-containing enzyme critical in melanin biosynthesis, is a key drug target for hyperpigmentation and melanoma in humans. Testing the inhibitory effects of compounds using tyrosinase from Agaricus bisporus (AbTYR) has been a common practice to identify potential therapeutics from synthetic and natural sources. However, structural diversity among human tyrosinase (hTYR) and AbTYR presents a challenge in developing drugs that are therapeutically effective. In this study, we combined retrospective and computational analyses with experimental data to provide insights into the development of new inhibitors targeting both hTYR and AbTYR. We observed contrasting effects of Thiamidol™ and our 4-(4-hydroxyphenyl)piperazin-1-yl-derivative (6) on both enzymes; based on this finding, we aimed to investigate their binding modes in hTYR and AbTYR to identify residues that significantly improve affinity. All the information led to the discovery of compound [4-(4-hydroxyphenyl)piperazin-1-yl](2-methoxyphenyl)methanone (MehT-3, 7), which showed comparable activity on AbTYR (IC50 = 3.52 µM) and hTYR (IC50 = 5.4 µM). Based on these achievements we propose the exploitation of our computational results to provide relevant structural information for the development of newer dual-targeting molecules, which could be preliminarily tested on AbTYR as a rapid and inexpensive screening procedure before being tested on hTYR.


Subject(s)
Hyperpigmentation , Monophenol Monooxygenase , Humans , Retrospective Studies , Copper , Drug Delivery Systems , Piperazine
11.
J Med Chem ; 66(16): 11464-11475, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37566998

ABSTRACT

T-cell immunoglobulin and mucin domain 3 (TIM-3) is a negative immune checkpoint that represents a promising target for cancer immunotherapy. Although encouraging results have been observed for TIM-3 inhibition in the context of acute myeloid leukemia (AML), targeting TIM-3 is currently restricted to monoclonal antibodies (mAbs). To fill this gap, we implemented a pharmacophore-based screening approach to identify small-molecule TIM-3 inhibitors. Our approach resulted in the identification of hit compounds with TIM-3 binding affinity. Subsequently, we used the structure-activity relationship (SAR) by a catalog approach to identify compound A-41 with submicromolar TIM-3 binding affinity. Remarkably, A-41 demonstrated the ability to block TIM-3 interactions with key ligands and inhibited the immunosuppressive function of TIM-3 using an in vitro coculture assay. This work will pave the way for future drug discovery efforts aiming at the development of small-molecule inhibitors TIM-3 for AML.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Leukemia, Myeloid, Acute , Humans , Antibodies, Monoclonal/therapeutic use , Coculture Techniques , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Pharmacophore
12.
J Med Chem ; 66(17): 11761-11791, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37585683

ABSTRACT

Carbapenem resistance mediated by metallo-ß-lactamases (MBL) such as New Delhi metallo-ß-lactamase-1 (NDM-1) has become a major factor threatening the efficacy of essential ß-lactam antibiotics. Starting from hit fragment dipicolinic acid (DPA), 8-hydroxy- and 8-sulfonamido-quinoline-2-carboxylic acids were developed as inhibitors of NDM-1 with highly improved inhibitory activity and binding affinity. The most active compounds formed reversibly inactive ternary protein-inhibitor complexes with two zinc ions as proven by native protein mass spectrometry and bio-layer interferometry. Modification of the NDM-1 structure with remarkable entropic gain was shown by isothermal titration calorimetry and NMR spectroscopy of isotopically labeled protein. The best compounds were potent inhibitors of NDM-1 and other representative MBL with no or little inhibition of human zinc-binding enzymes. These inhibitors significantly reduced the minimum inhibitory concentrations (MIC) of meropenem for multidrug-resistant bacteria recombinantly expressing blaNDM-1 as well as for several multidrug-resistant clinical strains at concentrations non-toxic to human cells.


Subject(s)
Carbapenems , Quinolines , Humans , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Kinetics , beta-Lactamases/metabolism , Microbial Sensitivity Tests , Bacteria/metabolism , Thermodynamics , Zinc/chemistry , Carboxylic Acids , beta-Lactamase Inhibitors/chemistry
13.
Front Microbiol ; 14: 1197120, 2023.
Article in English | MEDLINE | ID: mdl-37250020

ABSTRACT

Cell entry of most alphaherpesviruses is mediated by the binding of glycoprotein D (gD) to different cell surface receptors. Equine herpesvirus type 1 (EHV-1) and EHV-4 gDs interact with equine major histocompatibility complex I (MHC-I) to initiate entry into equine cells. We have characterized the gD-MHC-I interaction by solving the crystal structures of EHV-1 and EHV-4 gDs (gD1, gD4), performing protein-protein docking simulations, surface plasmon resonance (SPR) analysis, and biological assays. The structures of gD1 and gD4 revealed the existence of a common V-set immunoglobulin-like (IgV-like) core comparable to those of other gD homologs. Molecular modeling yielded plausible binding hypotheses and identified key residues (F213 and D261) that are important for virus binding. Altering the key residues resulted in impaired virus growth in cells, which highlights the important role of these residues in the gD-MHC-I interaction. Taken together, our results add to our understanding of the initial herpesvirus-cell interactions and will contribute to the targeted design of antiviral drugs and vaccine development.

14.
Eur J Med Chem ; 252: 115270, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36934484

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a serious chronic disease with an alarmingly growing worldwide prevalence. Current treatment of T2DM mainly relies on drug combinations in order to control blood glucose levels and consequently prevent the onset of hyperglycaemia-related complications. The development of multiple-targeted drugs recently emerged as an attractive alternative to drug combinations for the treatment of complex diseases with multifactorial pathogenesis, such as T2DM. Protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AKR1B1) are two enzymes crucially involved in the development of T2DM and its chronic complications and, therefore, dual inhibitors targeted to both these enzymes could provide novel agents for the treatment of this complex pathological condition. In continuing our search for dual-targeted PTP1B/AKR1B1 inhibitors, we designed new (5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)alkanoic acids. Among them, 3-(4-phenylbutoxy)benzylidene derivatives 6f and 7f, endowed with interesting inhibitory activity against both targets, proved to control specific cellular pathways implicated in the development of T2DM and related complications.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Phosphoric Monoester Hydrolases , Ligands , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Aldehyde Reductase
15.
ChemMedChem ; 18(9): e202200635, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36812048

ABSTRACT

SARS coronavirus main proteases (3CL proteases) have been validated as pharmacological targets for the treatment of coronavirus infections. Current inhibitors of SARS main protease, including the clinically admitted drug nirmatrelvir are peptidomimetics with the downsides of this class of drugs including limited oral bioavailability, cellular permeability, and rapid metabolic degradation. Here, we investigate covalent fragment inhibitors of SARS Mpro as potential alternatives to peptidomimetic inhibitors in use today. Starting from inhibitors acylating the enzyme's active site, a set of reactive fragments was synthesized, and the inhibitory potency was correlated with the chemical stability of the inhibitors and the kinetic stability of the covalent enzyme-inhibitor complex. We found that all tested acylating carboxylates, several of them published prominently, were hydrolyzed in assay buffer and the inhibitory acyl-enzyme complexes were rapidly degraded leading to the irreversible inactivation of these drugs. Acylating carbonates were found to be more stable than acylating carboxylates, however, were inactive in infected cells. Finally, reversibly covalent fragments were investigated as chemically stable SARS CoV-2 inhibitors. Best was a pyridine-aldehyde fragment with an IC50 of 1.8 µM at a molecular weight of 211 g/mol, showing that pyridine fragments indeed are able to block the active site of SARS-CoV-2 main protease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Pyridines/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
16.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677775

ABSTRACT

The natural product Salvinorin A (SalA) was the first nitrogen-lacking agonist discovered for the opioid receptors and exhibits high selectivity for the kappa opioid receptor (KOR) turning SalA into a promising analgesic to overcome the current opioid crisis. Since SalA's suffers from poor pharmacokinetic properties, particularly the absence of gastrointestinal bioavailability, fast metabolic inactivation, and subsequent short duration of action, the rational design of new tailored analogs with improved clinical usability is highly desired. Despite being known for decades, the binding mode of SalA within the KOR remains elusive as several conflicting binding modes of SalA were proposed hindering the rational design of new analgesics. In this study, we rationally determined the binding mode of SalA to the active state KOR by in silico experiments (docking, molecular dynamics simulations, dynophores) in the context of all available mutagenesis studies and structure-activity relationship (SAR) data. To the best of our knowledge, this is the first comprehensive evaluation of SalA's binding mode since the determination of the active state KOR crystal structure. SalA binds above the morphinan binding site with its furan pointing toward the intracellular core while the C2-acetoxy group is oriented toward the extracellular loop 2 (ECL2). SalA is solely stabilized within the binding pocket by hydrogen bonds (C210ECL2, Y3127.35, Y3137.36) and hydrophobic contacts (V1182.63, I1393.33, I2946.55, I3167.39). With the disruption of this interaction pattern or the establishment of additional interactions within the binding site, we were able to rationalize the experimental data for selected analogs. We surmise the C2-substituent interactions as important for SalA and its analogs to be experimentally active, albeit with moderate frequency within MD simulations of SalA. We further identified the non-conserved residues 2.63, 7.35, and 7.36 responsible for the KOR subtype selectivity of SalA. We are confident that the elucidation of the SalA binding mode will promote the understanding of KOR activation and facilitate the development of novel analgesics that are urgently needed.


Subject(s)
Diterpenes, Clerodane , Receptors, Opioid, kappa , Humans , Receptors, Opioid, kappa/metabolism , Diterpenes, Clerodane/chemistry , Receptors, Opioid , Analgesics , Analgesics, Opioid/chemistry
17.
Appl Biochem Biotechnol ; 195(2): 1042-1058, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36287330

ABSTRACT

We report the synthesis of 21 new proluciferin compounds that bear a small aliphatic ether group connected to the 6' hydroxy function of firefly luciferin and either contain an acid or methyl ester function at the dihydrothiazole ring. Each of these compounds was found to be a substrate for some members of the human CYP1 and CYP3 families; a total of 92 new enzyme-substrate pairs were identified. In a screen of the whole human P450 complement (CYPome) with three selected proluciferin acid substrates, another 13 enzyme-substrate pairs were detected, which involve enzymes belonging to the CYP2, CYP4, CYP7, CYP21, and CYP27 families. All in all, we identified new probe substrates for members of seven out of 18 human CYP families.


Subject(s)
Cytochrome P-450 Enzyme System , Humans
18.
Bioorg Chem ; 131: 106330, 2023 02.
Article in English | MEDLINE | ID: mdl-36565673

ABSTRACT

Cytochrome P450 enzymes (CYPs) are one of the most important classes of oxidative enzymes in the human body, carrying out metabolism of various exogenous and endogenous substrates. In order to expand the knowledge of these enzymes' specificity and to obtain new natural product derivatives, CYP4F11, a cytochrome P450 monooxygenase, was used in the biotransformation of dialkylresorcinols 1 and 2, a pair of antibiotic microbial natural products. This investigation resulted in four biotransformation products including two oxidative products: a hydroxylated derivative (3) and a carboxylic acid derivative (4). In addition, acetylated (5) and esterified products (6) were isolated, formed by further metabolism by endogenous yeast enzymes. Oxidative transformations were highly regioselective, and took place exclusively at the ω-position of the C-5 alkyl chain. Homology modeling studies revealed that optimal hydrogen bonding between 2 and the enzyme can only be established with the C-5 alkyl chain pointing towards the heme. The closely-related CYP4F12 was not capable of oxidizing the dialkylresorcinol 2. Modeling experiments rationalize these differences by the different shapes of the binding pockets with respect to the non-oxidized alkyl chain. Antimicrobial testing indicated that the presence of polar groups on the side-chains reduces the antibiotic activity of the dialkylresorcinols.


Subject(s)
Anti-Bacterial Agents , Cytochrome P-450 Enzyme System , Resorcinols , Humans , Anti-Bacterial Agents/metabolism , Biotransformation , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Resorcinols/metabolism
19.
Biomedicines ; 10(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36551778

ABSTRACT

Alprazolam is a triazolobenzodiazepine which is most commonly used in the short-term management of anxiety disorders, often in combination with antipsychotics. The four human members of the CYP3A subfamily are mainly responsible for its metabolism, which yields the main metabolites 4-hydroxyalprazolam and α-hydroxyalprazolam. We performed a comparison of alprazolam metabolism by all four CYP3A enzymes upon recombinant expression in the fission yeast Schizosaccharomyces pombe. CYP3A4 and CYP3A5 show the highest 4-hydroxyalprazolam production rates, while CYP3A5 alone is the major producer of α-hydroxyalprazolam. For both metabolites, CYP3A7 and CYP3A43 show lower activities. Computational simulations rationalize the difference in preferred oxidation sites observed between the exemplary enzymes CYP3A5 and CYP3A43. Investigations of the alprazolam metabolites formed by three previously described CYP3A43 mutants (L293P, T409R, and P340A) unexpectedly revealed that they produce 4-hydroxy-, but not α-hydroxyalprazolam. Instead, they all also make a different metabolite, which is 5-N-O alprazolam. With respect to 4-hydroxyalprazolam, the mutants showed fourfold (T409R) to sixfold (L293P and P340A) higher production rates compared to the wild-type (CYP3A43.1). In the case of 5-N-O alprazolam, the production rates were similar for the three mutants, while no formation of this metabolite was found in the wild-type incubation.

20.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36355476

ABSTRACT

G protein-coupled receptors (GPCRs) are amongst the most pharmaceutically relevant and well-studied protein targets, yet unanswered questions in the field leave significant gaps in our understanding of their nuanced structure and function. Three-dimensional pharmacophore models are powerful computational tools in in silico drug discovery, presenting myriad opportunities for the integration of GPCR structural biology and cheminformatics. This review highlights success stories in the application of 3D pharmacophore modeling to de novo drug design, the discovery of biased and allosteric ligands, scaffold hopping, QSAR analysis, hit-to-lead optimization, GPCR de-orphanization, mechanistic understanding of GPCR pharmacology and the elucidation of ligand-receptor interactions. Furthermore, advances in the incorporation of dynamics and machine learning are highlighted. The review will analyze challenges in the field of GPCR drug discovery, detailing how 3D pharmacophore modeling can be used to address them. Finally, we will present opportunities afforded by 3D pharmacophore modeling in the advancement of our understanding and targeting of GPCRs.

SELECTION OF CITATIONS
SEARCH DETAIL