Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 659
Filter
1.
Biotechnol Bioeng ; 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39369338

ABSTRACT

Skeletal muscle (SKM) is the largest organ in mammalian body and it can repair damages by using the residential myogenic stem cells (MuSC), but this repairing capacity reduces with age and in some genetic muscular dystrophy. Under these circumstances, artificial amplification of autologous MuSC in vitro might be necessary to repair the damaged SKM. The amplification of MuSC is highly dependent on myogenic signals, such as sonic hedgehog (Shh), Wnt3a, and fibroblast growth factors, so formulating an optimum myogenic kit composed of specific myogenic signals might increase the proliferation and differentiation of MuSC efficiently. In this study, various myogenic signals have been tested on C2C12 myoblasts and primary MuSC, and a myogenic kit consists of insulin, lithium chloride, T3, and retinoic acid has been formulated, and we found it significantly increased the fusion index and MHC expression level of both C2C12 and MuSC myotubes. A novel bioreactor providing cyclic stretching (CS) and electrical stimulation (ES) has been fabricated to enhance the myogenic differentiation of both C2C12 and MuSC. We further found that coating the bioreactor substratum with collagen gave the best effect on proliferation and differentiation of MuSC. Furthermore, combining the collagen coating and physical stimuli (CS + ES) in the bioreactor can generate more proliferative primary MuSC cells. Our results have demonstrated that the combination of myogenic kit and bioreactor can provide environment for efficient MuSC proliferation and differentiation. These MuSC and mature myotubes amplified in the bioreactor might be useful for clinical grafting into damaged SKM in the future.

2.
bioRxiv ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39372757

ABSTRACT

Mechanistic understanding of the immune checkpoint receptor PD1 is largely based on mouse models, but human and mouse PD1 orthologs exhibit only 59.6% identity in amino acid sequences. Here we show that human PD1 is more inhibitory than mouse PD1 due to stronger interactions with the ligands PDL1 and PDL2 and with the effector phosphatase Shp2. A novel motif highly conserved among PD1 orthologs in vertebrates except in rodents is primarily responsible for the differential Shp2 recruitment. Evolutionary analysis suggested that rodent PD1 orthologs uniquely underwent functional relaxation, particularly during the K-Pg boundary. Humanization of the PD1 intracellular domain disrupted the anti-tumor activity of mouse T cells while increasing the magnitude of anti-PD1 response. Together, our study uncovers species-specific features of the PD1 pathway, with implications to PD1 evolution and differential anti-PD(L)1 responses in mouse models and human patients.

3.
Small ; : e2406871, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363794

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) with slightly acidic electrolytes process advantages such as high safety, competitive cost, and satisfactory electrochemical performance. However, the failure behaviors of both electrodes, regarding zinc dendrite growth, interfacial parasitic reactions, and the collapse of cathode materials hinder the practical application of ZIBs. To alleviate the issues of both anode and cathode at the same time, D-xylose (DX) is introduced to the electrolyte as a multifunctional additive. As a result, the side reaction of the anode is suppressed and the metallic deposition behavior is regulated due to the hydrogen bonding network reconstruction and preferential surface adsorption of DX; for the MnO2 cathode, the DX adsorption can help the interfacial charge transfer and increase the reactive sites. Benefiting from these merits, DX-optimized Zn//Zn battery displays reveal a prolonged lifespan of 6912 h and an ultra-high cumulative capacity of 17.28 Ah cm-2 at 5 mA cm-2. With the function of water reactivity suppression, the Coulombic efficiency reaches 99.91% at 2 mA cm-2; the Zn||MnO2 full batteries exhibit excellent cyclability over 2000 cycles at 5C with an increased capacity of 118.9 mAh g-1, indicating the dual functions to both of the electrodes for AZIBs.

4.
Ageing Res Rev ; : 102542, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39396676

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) accounts for 50% of heart failure (HF) cases, making it the most common type of HF, and its prevalence continues to increase in the aging society. HFpEF is a systemic syndrome resulting from many risk factors, such as aging, metabolic syndrome, and hypertension, and its clinical features are highly heterogeneous in different populations. HFpEF syndrome involves the dysfunction of multiple organs, including the heart, lung, muscle, and vascular system. The heart shows dysfunction of various cells, including cardiomyocytes, endothelial cells, fibroblasts, adipocytes, and immune cells. The complex etiology and pathobiology limit experimental research on HFpEF in animal models, delaying a comprehensive understanding of the mechanisms and making treatment difficult. Recently, many scientists and cardiologists have attempted to improve the clinical outcomes of HFpEF. Recent advances in clinically related animal models and systemic pathology studies have improved our understanding of HFpEF, and clinical trials involving sodium-glucose cotransporter 2 inhibitors have significantly enhanced our confidence in treating HFpEF. This review provides an updated comprehensive discussion of the etiology and pathobiology, molecular and cellular mechanisms, preclinical animal models, and therapeutic trials in animals and patients to enhance our understanding of HFpEF and improve clinical outcomes.

5.
Adv Sci (Weinh) ; : e2404608, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250325

ABSTRACT

Post-translational modifications on the histone H3 tail regulate chromatin structure, impact epigenetics, and hence the gene expressions. Current chemical modulation tools, such as unnatural amino acid incorporation, protein splicing, and sortase-based editing, have allowed for the modification of histones with various PTMs in cellular contexts, but are not applicable for editing native chromatin. The use of small organic molecules to manipulate histone-modifying enzymes alters endogenous histone PTMs but lacks precise temporal and spatial control. To date, there has been no achievement in modulating histone methylation in living cells with spatiotemporal resolution. In this study, a new method is presented for temporally manipulating histone dimethylation H3K9me2 using a photo-responsive inhibitor that specifically targets the methyltransferase G9a on demand. The photo-caged molecule is stable under physiological conditions and cellular environments, but rapidly activated upon exposure to light, releasing the bioactive component that can immediately inhibit the catalytic ability of the G9a in vitro. Besides, this masked compound could also efficiently reactivate the inhibition of methyltransferase activity in living cells, subsequently suppress H3K9me2, a mark that regulates various chromatin functions. Therefore, the chemical system will be a valuable tool for manipulating the epigenome for therapeutic purposes and furthering the understanding of epigenetic mechanisms.

6.
Adv Mater ; : e2406145, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221543

ABSTRACT

Large-scale application of low-cost, high-safety and environment-compatible aqueous Zn metal batteries (ZMBs) is hindered by Zn dendrite failure and side reactions. Herein, highly reversible ZMBs are obtained by addition of trace D-pantothenate calcium additives to engineer a dual-functional interfacial layer, which is enabled by a bioinspired gating effect for excluding competitive free water near Zn surface due to the trapping and immobilization of water by hydroxyl groups, and guiding target Zn2+ transport across interface through carboxyl groups of pantothenate anions, as well as a dynamic electrostatic shielding effect around Zn protuberances from Ca2+ cations to ensure uniform Zn2+ deposition. In consequence, interfacial side reactions are perfectly inhibited owing to reduced water molecules reaching Zn surface, and the uniform and compact deposition of Zn2+ is achieved due to promoted Zn2+ transport and deposition kinetics. The ultra-stable symmetric cells with beyond 9000 h at 0.5 mA cm-2 with 0.5 mAh cm-2 and over 5000 h at 5 mA cm-2 with 1 mAh cm-2, and an average Coulombic efficiency of 99.8% at 1 mA cm-2 with 1 mAh cm-2, are amazingly realized. The regulated-electrolyte demonstrates high compatibility with verified cathodes for stable full cells. This work opens a brand-new pathway to regulate Zn/electrolyte interface to promise reversible ZMBs.

7.
Cell Rep ; 43(8): 114568, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39088318

ABSTRACT

The serine/threonine phosphatase calcineurin is a component of the T cell receptor (TCR) signalosome, where it promotes T cell activation by dephosphorylating LckS59. Using small interfering RNA (siRNA)-mediated knockdown and CRISPR-Cas9-targeted genetic disruption of the calcineurin A chain α and ß isoforms, we find that calcineurin also functions as an adaptor in TCR-signaled human T cells. Unlike inhibition of its phosphatase activity, in the absence of calcineurin A, TCR signaling results in attenuated actin rearrangement, markedly reduced TCR-Lck microcluster formation and recruitment of the adaptor RhoH, and diminished phosphorylation of critical targets downstream of Lck such as TCRζ and ZAP-70. Reconstitution of deficient T cells with either calcineurin Aα or Aß restores TCR microcluster formation and signaling, as does reconstitution with a phosphatase-inactive Aα chain. These results assign a non-enzymatic adaptor function to calcineurin in the formation and stabilization of a functional TCR signaling complex.


Subject(s)
Calcineurin , Receptors, Antigen, T-Cell , Signal Transduction , Calcineurin/metabolism , Humans , Receptors, Antigen, T-Cell/metabolism , Jurkat Cells , T-Lymphocytes/metabolism , Phosphorylation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Adaptor Proteins, Signal Transducing/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism
8.
Cell Metab ; 36(8): 1839-1857.e12, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111287

ABSTRACT

Lungs can undergo facultative regeneration, but handicapped regeneration often leads to fibrosis. How microenvironmental cues coordinate lung regeneration via modulating cell death remains unknown. Here, we reveal that the neurotransmitter dopamine modifies the endothelial niche to suppress ferroptosis, promoting lung regeneration over fibrosis. A chemoproteomic approach shows that dopamine blocks ferroptosis in endothelial cells (ECs) via dopaminylating triosephosphate isomerase 1 (TPI1). Suppressing TPI1 dopaminylation in ECs triggers ferroptotic angiocrine signaling to aberrantly activate fibroblasts, leading to a transition from lung regeneration to fibrosis. Mechanistically, dopaminylation of glutamine (Q) 65 residue in TPI1 directionally enhances TPI1's activity to convert dihydroxyacetone phosphate (DHAP) to glyceraldehyde 3-phosphate (GAP), directing ether phospholipid synthesis to glucose metabolism in regenerating lung ECs. This metabolic shift attenuates lipid peroxidation and blocks ferroptosis. Restoring TPI1 Q65 dopaminylation in an injured endothelial niche overturns ferroptosis to normalize pro-regenerative angiocrine function and alleviate lung fibrosis. Overall, dopaminylation of TPI1 balances lipid/glucose metabolism and suppresses pro-fibrotic ferroptosis in regenerating lungs.


Subject(s)
Endothelial Cells , Ferroptosis , Lung , Animals , Mice , Lung/metabolism , Lung/pathology , Humans , Endothelial Cells/metabolism , Regeneration , Triose-Phosphate Isomerase/metabolism , Mice, Inbred C57BL , Signal Transduction , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Male
9.
Sensors (Basel) ; 24(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39001115

ABSTRACT

In the field of autofocus for optical systems, although passive focusing methods are widely used due to their cost-effectiveness, fixed focusing windows and evaluation functions in certain scenarios can still lead to focusing failures. Additionally, the lack of datasets limits the extensive research of deep learning methods. In this work, we propose a neural network autofocus method with the capability of dynamically selecting the region of interest (ROI). Our main work is as follows: first, we construct a dataset for automatic focusing of grayscale images; second, we transform the autofocus issue into an ordinal regression problem and propose two focusing strategies: full-stack search and single-frame prediction; and third, we construct a MobileViT network with a linear self-attention mechanism to achieve automatic focusing on dynamic regions of interest. The effectiveness of the proposed focusing method is verified through experiments, and the results show that the focusing MAE of the full-stack search can be as low as 0.094, with a focusing time of 27.8 ms, and the focusing MAE of the single-frame prediction can be as low as 0.142, with a focusing time of 27.5 ms.

10.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3070-3080, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041167

ABSTRACT

This paper aims to explore the anti-inflammatory mechanism of Saracae Cortex by using network pharmacology and molecular docking methods and verify it through the inflammation model of zebrafish. The effective components, potential core targets, and signaling pathways of Saracae Cortex were obtained by using network pharmacology. A lipopolysaccharide(LPS)-induced inflammation model of zebrafish was established to evaluate the anti-inflammatory activity of aqueous extract and 70% ethanol extract of Saracae Cortex with cell apoptosis rate and reactive oxygen species(ROS) production rate as indicators. q PCR was performed to verify the main targets predicted by network pharmacology. The prediction found that there were 121 potential anti-inflammatory targets in Saracae Cortex. Protein-protein interaction(PPI) analysis showed that Saracae Cortex mainly acted on signal transducer and activator of transcription 3(STAT3), vascular endothelial growth factor A( VEGFA), epidermal growth factor( EGF), tumor necrosis factor( TNF),tumor protein p53(TP53), matrix metalloprotein 9(MMP9), c-fos proto-oncogene protein(FOS), estrogen receptor 1(ESR1), cx-c motif chemokine ligand 8(CXCL8), cluster of differentiation 8(CD8), and other targets. Gene Ontology(GO) analysis showed the biological process mainly acted on the inhibition of apoptosis, the positive regulation of gene expression, and the positive regulation of cell proliferation. Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis showed that the mitogen-activated protein kinase(MAPK) signaling pathway, PI3K-Akt signaling pathway, and hypoxia-inducible factor 1(HIF-1) signaling pathway may play a key role in anti-inflammation of Saracae Cortex. Molecular docking verified that five key compounds had a strong binding force with their corresponding core target. Zebrafish animal experiments showed that Saracae Cortex could significantly inhibit ROS formation and reduce cell apoptosis in juvenile fish caused by inflammation and inhibit the further enhancement of inflammatory response in tissue. In addition, compared with the blank group, the transcription levels of nuclear factor kappa-B(NF-κB), TP53, FOS, adaptor protein complex-1(AP-1), and mitogen-activated protein kinases P38(P38) were significantly up-regulated in the model group. Compared with the model group, the m RNA expression of NF-κB, TP53, FOS, AP-1, and P38 was significantly down-regulated in zebrafish tissue treated with aqueous extract and 70% ethanol extract of Saracae Cortex. Saracae Cortex plays an anti-inflammatory role through multiple components and targets, and its anti-inflammatory effect may be related to the inhibition of the MAPK signaling pathway.


Subject(s)
Anti-Inflammatory Agents , Molecular Docking Simulation , Network Pharmacology , Zebrafish , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Signal Transduction/drug effects , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Disease Models, Animal , Protein Interaction Maps
11.
Sci Rep ; 14(1): 17105, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048652

ABSTRACT

To explore the effect and mechanism of coir fiber on the performance of foamed concrete, the flexural performance test, pore characteristics and microstructure test of coir fiber foamed concrete with different content were carried out. First, Image-Pro Plus (image processing software) was used to study the pore morphology, porosity, average pore diameter, and pore roundness of CFFC with various fibers dosage (0, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%) by binarization processing method. Then, a total of eighteen specimens, divided into six groups, were used to investigate the effect of CF dosage on flexural strength, toughness, energy absorption, and failure patterns of FC through a three-point flexural test. Furthermore, the microscopic properties of coir fiber foamed concrete (CFFC) were observed by scanning electron microscope (SEM) and energy dispersive X-ray detector (XRD) to explain the influence mechanism of CF on FC flexural properties. According to the research, CF can affect the pore characteristics of CFFC and improve its flexural performance. When CF content is 1.5-2.0%, the porosity, diameter and roundness of CFFC have lower values of 68.6%, 1.96 mm and 1.29. After the fiber dosage reaches 1.5%, the CFFC failure mode changed to plastic damage, the flexural strength increased from 0.33 to 0.73 MPa, and the toughness energy absorption value was increased from 0.05 to 1.4 J. The optimum dosage of coir fiber is 2.0% for improving the flexural mechanical properties of FC. CF affects the process of hydration reaction of CFFC, but does not change the type of hydration product. However, the flexural performance of FC would decrease with excessive dosage of CF (> 2.0%) due to accelerating the formation of Ca(OH)2. CFFC can solve problems such as brittleness and easy cracking existing in traditional foamed concrete, and it can be used in the field of pavement engineering, foundation backfill and lightweight wall structure with CF dosage of 15-2.0%.

12.
J Biol Chem ; 300(8): 107581, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025450

ABSTRACT

Because of their ability to induce lymphocyte apoptosis, glucocorticoids (GC) are widely used to treat hematological malignancies such as lymphomas and multiple myeloma. Their effectiveness is often limited, however, due to the development of glucocorticoid resistance by a variety of molecular mechanisms. Here we performed an unbiased genome-wide CRISPR screen with the human T-cell leukemia cell line Jurkat to find previously unidentified genes required for GC-induced apoptosis. One such gene was KMT2D (also known as MLL2 or MLL4), which encodes a histone lysine methyltransferase whose mutations are associated with a variety of cancers, blood malignancies in particular, and are considered markers of poor prognosis. Knockout of KMT2D by CRISPR/Cas9 gene editing in Jurkat and several multiple myeloma cell lines downregulated GR protein expression. Surprisingly, this was not due to a reduction in GR transcripts, but rather to a decrease in the protein's half-life, primarily due to proteasomal degradation. Reconstitution of KMT2D expression restored GR levels. In contrast to the known ability of KMT2D to control gene transcription through covalent histone methylation, KMT2D-mediated upregulation of GR levels did not require its methyltransferase activity. Co-immunoprecipitation and proximity ligation assays found constitutive binding of KMT2D to the GR, which was enhanced in the presence of GC. These observations reveal KMT2D to be essential for the stabilization of cellular GR levels, and suggest a possible mechanism by which KMT2D mutations may lead to GC resistance in some malignancies.


Subject(s)
Receptors, Glucocorticoid , Humans , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Jurkat Cells , Proteolysis , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Apoptosis , CRISPR-Cas Systems , Cell Line, Tumor
13.
Int J Pharm ; 662: 124527, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39079593

ABSTRACT

Die filling is a crucial step in the pharmaceutical tablet manufacturing process. For industrial-scale production using rotary presses, suction filling is typically employed due to its significant efficiency advantages over gravity filling. Despite its widespread use, our understanding of the suction filling process remains limited. Specifically, there is insufficient comprehension of how filling performance is influenced by factors such as suction velocity, filling velocity, and the properties of the powder materials. Building on our previous research, this study aims to further investigate the effects of powder properties and process parameters (e.g., filling velocity, suction velocity, fill depth) on suction filling behaviour. A systematic experimental investigation was conducted using a model suction filling system, considering both cohesive and free-flowing pharmaceutical powders. The effect of fill depth on suction filling of these powders was examined at different filling and suction velocities. The results demonstrate that two distinctive flow regimes for suction filling can be identified: slow filling and fast filling. These regimes are delineated by a critical filling-to-suction velocity ratio. In the slow filling regime, the filling-to-suction velocity ratio is lower than the critical ratio, meaning that the filling phase is slower than the suction phase. Conversely, the fast filling regime occurs when the filling-to-suction velocity ratio exceeds the critical ratio, implying that the filling phase is faster than the suction phase. This study reveals, for the first time, that when the powder flow pattern during suction filling is dominated by plug flow, full die fill (i.e., the fill ratio equals unity) is achieved in the slow filling regime. However, in the fast filling regime, incomplete die fill is obtained. It is also found that when plug flow prevails during fast filling, the fill ratio has an inverse correlation with the filling-to-suction velocity ratio. This study further reveals that when the plug flow assumption is valid, the filling ratio at various fill-to-suction velocity ratios can be well predicted mathematically. Furthermore, it is also found that once the powder flow pattern differs from the ideal plug flow, which could be induced by the filling conditions and powder cohesion, the fill ratio can be overpredicted.


Subject(s)
Powders , Tablets , Technology, Pharmaceutical , Technology, Pharmaceutical/methods , Suction , Drug Compounding/methods
14.
Anal Chem ; 96(29): 11915-11922, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39007441

ABSTRACT

G-quadruplex structures within the nuclear genome (nG4) is an important regulatory factor, while the function of G4 in the mitochondrial genome (mtG4) still needs to be explored, especially in human sperms. To gain a better understanding of the relationship between mtG4 and mitochondrial function, it is crucial to develop excellent probes that can selectively visualize and track mtG4 in both somatic cells and sperms. Herein, based on our previous research on purine frameworks, we attempted for the first time to extend the conjugated structure from the C-8 site of purine skeleton and discovered that the purine derivative modified by the C-8 aldehyde group is an ideal platform for constructing near-infrared probes with extremely large Stokes shift (>220 nm). Compared with the compound substituted with methylpyridine (PAP), the molecule substituted with methylthiazole orange (PATO) showed better G4 recognition ability, including longer emission (∼720 nm), more significant fluorescent enhancement (∼67-fold), lower background, and excellent photostability. PATO exhibited a sensitive response to mtG4 variation in both somatic cells and human sperms. Most importantly, PATO helped us to discover that mtG4 was significantly increased in cells with mitochondrial respiratory chain damage caused by complex I inhibitors (6-OHDA and rotenone), as well as in human sperms that suffer from oxidative stress. Altogether, our study not only provides a novel ideal molecular platform for constructing high-performance probes but also develops an effective tool for studying the relationship between mtG4 and mitochondrial function in both somatic cells and human sperms.


Subject(s)
Fluorescent Dyes , Purines , Humans , Purines/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Mitochondrial Diseases/metabolism , Up-Regulation , Genome, Mitochondrial , G-Quadruplexes , Mitochondria/metabolism , Infrared Rays , HeLa Cells
15.
Front Oncol ; 14: 1383096, 2024.
Article in English | MEDLINE | ID: mdl-38846981

ABSTRACT

Background: Tertiary lymphoid structures (TLS) is a particular component of tumor microenvironment (TME). However, its biological mechanisms in colorectal cancer (CRC) have not yet been understood. We desired to reveal the TLS gene signature in CRC and evaluate its role in prognosis and immunotherapy response. Methods: The data was sourced from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Based on TLS-related genes (TRGs), the TLS related subclusters were identified through unsupervised clustering. The TME between subclusters were evaluated by CIBERSORT and xCell. Subsequently, developing a risk model and conducting external validation. Integrating risk score and clinical characteristics to create a comprehensive nomogram. Further analyses were conducted to screen TLS-related hub genes and explore the relationship between hub genes, TME, and biological processes, using random forest analysis, enrichment and variation analysis, and competing endogenous RNA (ceRNA) network analysis. Multiple immunofluorescence (mIF) and immunohistochemistry (IHC) were employed to characterize the existence of TLS and the expression of hub gene. Results: Two subclusters that enriched or depleted in TLS were identified. The two subclusters had distinct prognoses, clinical characteristics, and tumor immune infiltration. We established a TLS-related prognostic risk model including 14 genes and validated its predictive power in two external datasets. The model's AUC values for 1-, 3-, and 5-year overall survival (OS) were 0.704, 0.737, and 0.746. The low-risk group had a superior survival rate, more abundant infiltration of immune cells, lower tumor immune dysfunction and exclusion (TIDE) score, and exhibited better immunotherapy efficacy. In addition, we selected the top important features within the model: VSIG4, SELL and PRRX1. Enrichment analysis showed that the hub genes significantly affected signaling pathways related to TLS and tumor progression. The ceRNA network: PRRX1-miRNA (hsa-miR-20a-5p, hsa-miR-485-5p) -lncRNA has been discovered. Finally, IHC and mIF results confirmed that the expression level of PRRX1 was markedly elevated in the TLS- CRC group. Conclusion: We conducted a study to thoroughly describe TLS gene signature in CRC. The TLS-related risk model was applicable for prognostic prediction and assessment of immunotherapy efficacy. The TLS-hub gene PRRX1, which had the potential to function as an immunomodulatory factor of TLS, could be a therapeutic target for CRC.

16.
Ecol Evol ; 14(6): e11520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932962

ABSTRACT

Despite the worldwide distribution and rich diversity of the superfamily Tenebrionoidea, the knowledge of the mitochondrial genomes (mtgenome) characteristics of the superfamily is still very limited, and its phylogenetics and evolution remain unresolved. In the present study, we newly sequenced mtgenomes from 19 species belonging to Tenebrionoidea, and a total of 90 mitochondrial genomes from 16 families of Tenebrionoidea were used for phylogenetic analysis. There exist 37 genes for all 82 species of complete mtgenomes of 16 families investigated, and their characteristics are identical as reported mtgenomes of other Tenebrionoids. The Ka/Ks analysis suggests that all 13 PCGs have undergone a strong purifying selection. The phylogenetic analysis suggests the monophyly of Mordellidae, Meloidae, Oedemeridae, Pyrochroidae, Salpingidae, Scraptiidae, Lagriidae, and Tenebrionidae, and the Mordellidae is close to the Ripiphoridae. The "Tenebrionidae clade" and "Meloidae clade" are monophyletic, and both of them are sister groups. In the "Meloidae clade," Meloidae is close to Anthicidae. In the "Tenebrionidae clade," the family Lagriidae and Tenebrionidae are sister groups. The divergence time analysis suggests that Tenebrionoidea originated in the late Jurassic, Meloidae Mordellidae, Lagriidae, and Tenebrionidae in the Cretaceous, Oedemeridae in Paleogene. The work lays a base for the study of mtgenome, phylogenetics, and evolution of the superfamily Tenebrionoidea.

17.
ACS Appl Mater Interfaces ; 16(26): 33723-33732, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38913623

ABSTRACT

LiFePO4 is widely used because of its high safety and cycle stability, but its inefficient electronic conductivity combined with sluggish Li+ diffusivity restricts its performance. To overcome this obstacle, applying a layer of conductive carbon onto the surface of LiFePO4 has the greatest improvement in electronic conductivity and Li+ diffusivity. However, the rate performance of carbon-coated LiFePO4 makes it difficult to meet the application requirements. Although nitrogen doping improves electrochemical performance by providing active sites and electronic conductivity, the N-doped carbon coating is prone to agglomeration, which causes a sharp decrease in capacity when the current rate increases. In this work, a synergistic N, Mn codoping strategy is implemented to overcome the aforementioned drawbacks by disrupting the large agglomeration of C-N bonds, improving the uniformity of the surface coating layer to enhance the completeness of the conductive network and increasing the number of Li+ diffusion channels, and thus accelerating the mass transfer rate under high-rate current. Consequently, this strategy effectively improves the rate capability (119 mA h g-1 at 10 C) while maintaining excellent cycling performance (88% capacity retention over 600 cycles at 5 C). This work improves the rate of ion diffusion and the rate capability of micrometer-sized LiFePO4, thus, enabling its wider application.

18.
Int J Pharm ; 660: 124316, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38857664

ABSTRACT

The push-pull osmotic pump tablet is a promising drug delivery approach, offering advantages over traditional dosage forms in achieving consistent and predictable drug release rates. In the current study, the drug release process of push-pull osmotic pump tablets is modelled for the first time using the discrete element method (DEM) incorporated with a microscopic diffusion-induced swelling model. The effects of dosage and formulation design, such as delivery orifice size, drug-to-polymer ratio, tablet surface curvature, friction between particles and cohesion of polymer particles, on the drug release performance are systematically analysed. Numerical results reveal that an enlarged delivery orifice significantly increases both the total drug release and the drug release rate. Moreover, the larger the swellable particle component in the tablet, the higher the drug release rate. Furthermore, the tablet surface curvature is found to affect the drug release profile, i.e. the final drug release percentage increases with the increasing tablet surface curvature. It is also found that the drug release rate could be controlled by adjusting the inter-particle friction and the cohesion of polymer particles in the formulation. This DEM study offers valuable insights into the mechanisms governing drug release in push-pull osmotic pump tablets.


Subject(s)
Delayed-Action Preparations , Drug Delivery Systems , Drug Liberation , Osmosis , Tablets , Delayed-Action Preparations/chemistry , Polymers/chemistry , Chemistry, Pharmaceutical/methods , Models, Theoretical
19.
Nano Lett ; 24(27): 8427-8435, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38920280

ABSTRACT

Metal selenides show outstanding sodium-ion storage performance when matched with an ether-based electrolyte. However, the intrinsic origin of improvement and deterministic interface characteristics have not been systematically elucidated. Herein, employing FeSe2 anode as the model system, the electrochemical kinetics of metal selenides in ether and ester-based electrolytes and associated solid electrolyte interphase (SEI) are investigated in detail. Based on the galvanostatic intermittent titration technique and in situ electrochemical impedance spectroscopy, it is found that the ether-based electrolyte can ensure fast Na+ transfer and low interface impedance. Additionally, the ether-derived thin and smooth double-layer SEI, which is critical in facilitating ion transport, maintaining structural stability, and inhibiting electrolyte overdecomposition, is concretely visualized by transmission electron microscopy, atomic force microscopy, and depth-profiling X-ray photoelectron spectroscopy. This work provides a deep understanding of the optimization mechanism of electrolytes, which can guide available inspiration for the design of practical electrode materials.

20.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1083-1091, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884243

ABSTRACT

We quantified the lag time of vegetation response to drought in the Pearl River basin (PRB) based on the standardized precipitation evapotranspiration index (SPEI) and normalized difference vegetation index (NDVI), and constructed a vegetation loss probability model under drought stress based on the Bayesian theory and two-dimensional joint distribution. We further quantitatively evaluated the spatial variations of loss probability of four vegetation types (evergreen broadleaf forest, mixed forest, grassland, and cropland) under different drought intensities. The results showed that the drought risk in eastern West River, the upper reaches of North River and East River, and southern Pearl River Delta was obviously higher than that in other regions during 1982-2020. The response time of vegetation to drought in high-altitude areas in the upper reaches of PRB (mostly<3 month) was generally shorter than that in low altitude areas (>8 month). Drought exacerbated the probability of vegetation loss, with higher vulnerability of mixed forest than the other three vegetation types. The loss probability of vegetation was lower in northwestern PRB than that in central PRB.


Subject(s)
Droughts , Ecosystem , Forests , Rivers , Trees , China , Trees/growth & development , Stress, Physiological , Grassland , Models, Theoretical , Bayes Theorem , Poaceae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL