Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.409
Filter
1.
Small ; : e2400997, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712477

ABSTRACT

Dielectric capacitors are widely used in advanced electrical and electronic systems due to the rapid charge/discharge rates and high power density. High comprehensive energy storage properties are the ultimate ambition in the field of application achievements. Here, the high-entropy strategy is proposed to design and fabricate single-phase homogeneous (Bi0.5Ba0.1Sr0.1Ca0.2Na0.1)(Fe0.5Ti0.3Zr0.1Nb0.1)O3 ceramic, the hierarchical heterostructure including rhombohedral-tetragonal multiphase nanoclusters and locally disordered oxygen octahedral tilt can lead to the increased dielectric relaxation, diffused phase transition, diverse local polarization configurations, grain refinement, ultrasmall polar nanoregions, large random field, delayed polarization saturation and improved breakdown field. Accordingly, a giant Wrec ≈13.3 J cm-3 and a high η ≈78% at 66.4 kV mm-1 can be simultaneously achieved in the lead-free high-entropy BiFeO3-based ceramic, showing an obvious advantage in overall energy-storage properties over BiFeO3-based lead-free ceramics. Moreover, an ultrafast discharge rate (t0.9 = 18 ns) can be achieved at room temperature, concomitant with favorable temperature stability in the range of 20-160 °C, due to the enhanced diffuse phase transition and fast polarization response. This work provides a feasible pathway to design and generate dielectric materials exhibiting high comprehensive energy-storage performance.

2.
J Appl Clin Med Phys ; : e14380, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715381

ABSTRACT

PURPOSE: The aim of this study is to develop a deep learning model capable of discriminating between pancreatic plasma cystic neoplasms (SCN) and mucinous cystic neoplasms (MCN) by leveraging patient-specific clinical features and imaging outcomes. The intent is to offer valuable diagnostic support to clinicians in their clinical decision-making processes. METHODS: The construction of the deep learning model involved utilizing a dataset comprising abdominal magnetic resonance T2-weighted images obtained from patients diagnosed with pancreatic cystic tumors at Changhai Hospital. The dataset comprised 207 patients with SCN and 93 patients with MCN, encompassing a total of 1761 images. The foundational architecture employed was DenseNet-161, augmented with a hybrid attention mechanism module. This integration aimed to enhance the network's attentiveness toward channel and spatial features, thereby amplifying its performance. Additionally, clinical features were incorporated prior to the fully connected layer of the network to actively contribute to subsequent decision-making processes, thereby significantly augmenting the model's classification accuracy. The final patient classification outcomes were derived using a joint voting methodology, and the model underwent comprehensive evaluation. RESULTS: Using the five-fold cross validation, the accuracy of the classification model in this paper was 92.44%, with an AUC value of 0.971, a precision rate of 0.956, a recall rate of 0.919, a specificity of 0.933, and an F1-score of 0.936. CONCLUSION: This study demonstrates that the DenseNet model, which incorporates hybrid attention mechanisms and clinical features, is effective for distinguishing between SCN and MCN, and has potential application for the diagnosis of pancreatic cystic tumors in clinical practice.

3.
Nanoscale ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717507

ABSTRACT

Intravesical instillation is the common therapeutic strategy for bladder cancer. Besides chemo drugs, nanoparticles are used as intravesical instillation reagents, offering appealing therapeutic approaches for bladder cancer treatment. Metal oxide nanoparticle based chemodynamic therapy (CDT) converts tumor intracellular hydrogen peroxide to ROS with cancer cell-specific toxicity, which makes it a promising approach for the intravesical instillation of bladder cancer. However, the limited penetration of nanoparticle based therapeutic agents into the mucosa layer of the bladder wall poses a great challenge for the clinical application of CDT in intravesical instillation. Herein, we developed a 1064 nm NIR-II light driven hydrogel nanomotor for the CDT for bladder cancer via intravesical instillation. The hydrogel nanomotor was synthesized via microfluidics, wrapped with a lipid bilayer, and encapsulates CuO2 nanoparticles as a CDT reagent and core-shell structured Fe3O4@Cu9S8 nanoparticles as a fuel reagent with asymmetric distribution in the nanomotor (LipGel-NM). An NIR-II light irradiation of 1064 nm drives the active motion of LipGel-NMs, thus facilitating their distribution in the bladder and deep penetration into the mucosa layer of the bladder wall. After FA-mediated endocytosis in bladder cancer cells, CuO2 is released from LipGel-NMs due to the acidic intracellular environment for CDT. The NIR-II light powered active motion of LipGel-NMs effectively enhances CDT, providing a promising strategy for bladder cancer therapy.

4.
Sci Rep ; 14(1): 10555, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719902

ABSTRACT

Heat stress exposure in intermittent heat waves and subsequent exposure during war theaters pose a clinical challenge that can lead to multi-organ dysfunction and long-term complications in the elderly. Using an aged mouse model and high-throughput sequencing, this study investigated the molecular dynamics of the liver-brain connection during heat stress exposure. Distinctive gene expression patterns induced by periodic heat stress emerged in both brain and liver tissues. An altered transcriptome profile showed heat stress-induced altered acute phase response pathways, causing neural, hepatic, and systemic inflammation and impaired synaptic plasticity. Results also demonstrated that proinflammatory molecules such as S100B, IL-17, IL-33, and neurological disease signaling pathways were upregulated, while protective pathways like aryl hydrocarbon receptor signaling were downregulated. In parallel, Rantes, IRF7, NOD1/2, TREM1, and hepatic injury signaling pathways were upregulated. Furthermore, current research identified Orosomucoid 2 (ORM2) in the liver as one of the mediators of the liver-brain axis due to heat exposure. In conclusion, the transcriptome profiling in elderly heat-stressed mice revealed a coordinated network of liver-brain axis pathways with increased hepatic ORM2 secretion, possibly due to gut inflammation and dysbiosis. The above secretion of ORM2 may impact the brain through a leaky blood-brain barrier, thus emphasizing intricate multi-organ crosstalk.


Subject(s)
Brain , Gene Expression Profiling , Liver , Animals , Mice , Liver/metabolism , Brain/metabolism , Male , Transcriptome , Brain-Gut Axis , Heat-Shock Response/genetics , Mice, Inbred C57BL , Signal Transduction , Aging/genetics , Aging/metabolism
5.
Anal Chem ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730304

ABSTRACT

Rapidly identifying and quantifying Gram-positive bacteria are crucial to diagnosing and treating bacterial lower respiratory tract infections (LRTIs). This work presents a field-deployable biosensor for detecting Gram-positive bacteria from exhaled breath condensates (EBCs) based on peptidoglycan recognition using an aptamer. Dielectrophoretic force is employed to enrich the bacteria in 10 s without additional equipment or steps. Concurrently, the measurement of the sensor's interfacial capacitance is coupled to quantify the bacteria during the enrichment process. By incorporation of a semiconductor condenser, the whole detection process, including EBC collection, takes about 3 min. This biosensor has a detection limit of 10 CFU/mL, a linear range of up to 105 CFU/mL and a selectivity of 1479:1. It is cost-effective and disposable due to its low cost. The sensor provides a nonstaining, culture-free and PCR-independent solution for noninvasive and real-time diagnosis of Gram-positive bacterial LRTIs.

6.
Front Public Health ; 12: 1351479, 2024.
Article in English | MEDLINE | ID: mdl-38803810

ABSTRACT

Background: While increasing concerns arise about the health effects of environmental pollutants, the relationship between blood manganese (Mn) and sarcopenia has yet to be fully explored in the general population. Objective: This study aims to investigate the association between blood manganese (Mn) levels and sarcopenia in adults. Methods: In our study, we evaluated 8,135 individuals aged 18-59 years, utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning 2011 to 2018. We employed generalized additive model (GAM) to discern potential non-linear relationships and utilized the two-piecewise linear regression model to probe the association between blood Mn levels and sarcopenia. Results: After adjusting for potential confounders, we identified non-linear association between blood Mn levels and sarcopenia, with an inflection point at 13.45 µg/L. The effect sizes and the confidence intervals on the left and right sides of the inflection point were 1.006 (0.996 to 1.048) and 1.082 (1.043 to 1.122), respectively. Subgroup analysis showed that the effect sizes of blood Mn on sarcopenia have significant differences in gender and different BMI groups. Conclusion: Our results showed that a reverse U-shaped curve between blood Mn levels and sarcopenia, with an identified the inflection point at blood Mn level of 13.45 µg/L.


Subject(s)
Manganese , Nutrition Surveys , Sarcopenia , Humans , Sarcopenia/blood , Male , Adult , Manganese/blood , Female , Middle Aged , Adolescent , Young Adult , Cross-Sectional Studies , United States
7.
Clinics (Sao Paulo) ; 79: 100387, 2024.
Article in English | MEDLINE | ID: mdl-38805982

ABSTRACT

BACKGROUND & AIMS: The authors assess the diagnostic accuracy of the Transient Elastography-Controlled Attenuation Parameter (TE-CAP) in children of Southern China. METHODS: 105 obese or overweight children and adolescents were enrolled in the diagnostic test of TE-CAP assessment of hepatic steatosis using MRI-PDFF. Hepatic steatosis grades S0-S3 were classified. Statistical correlation, agreement and consistency between methods were evaluated. The diagnostic efficiency of TE-CAP was evaluated. The authors used the cutoff value of TE-CAP to detect hepatic steatosis in another 356 children. RESULTS: The Area Under Curve (AUC) of TE-CAP for grade ≥ S1, ≥ S2, and ≥ S3 steatosis were 0.975, 0.984, and 0.997, respectively. For detecting ≥ S1 steatosis, TE-CAP had a sensitivity of 96 % and a specificity of 97 %. For detecting ≥ S2 steatosis, TE-CAP had a sensitivity of 97 % and a specificity of 93 %. For detecting ≥ S3 steatosis, TE-CAP had a sensitivity of 1 and a specificity of 94 %. TE-CAP and MRI-PDFF had a linear correlation (r = 0. 0.87, p < 0.001). The hepatic steatosis was identified in 40.2 % (143/356) of children in which the obesity and overweight were 69.8 % (113/162) and 40.0 % (18/45). CONCLUSION: TE-CAP showed excellent diagnostic accuracy in pediatric hepatic steatosis.


Subject(s)
Elasticity Imaging Techniques , Fatty Liver , Magnetic Resonance Imaging , Sensitivity and Specificity , Humans , Child , Elasticity Imaging Techniques/methods , Male , Female , Adolescent , Fatty Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Reproducibility of Results , China , Area Under Curve , Severity of Illness Index , Overweight/diagnostic imaging , Reference Values
8.
Front Endocrinol (Lausanne) ; 15: 1374888, 2024.
Article in English | MEDLINE | ID: mdl-38808118

ABSTRACT

Introduction: Fine needle aspiration (FNA) biopsy is a widely accepted method for diagnosing thyroid nodules. However, the influence of maximum diameter (MD) of ACR TIRADS 5 (TR5) thyroid nodules on the FNA outcomes remains debated. This study examined the influence of MD on the FNA outcomes and investigated the optimal MD threshold for FNA in TR5 nodules. Methods: We conducted a retrospective analysis of 280 TR5 thyroid nodules from 226 patients who underwent FNA from January to June 2022 in our department. Probably malignant (PM) group was defined as Bethesda V in cytopathology with confirmed BRAF V600E mutation or Bethesda VI, the other cytopathology outcomes were defined as probably benign (PB) group. We examined factors influencing malignant cytopathology outcomes and determined the optimal MD threshold for FNA in TR5 nodules using logistic regression and restricted cubic spline (RCS) analysis. Results: Among these nodules, 58.2% (163/280) had PM outcomes. The PM group had a significantly larger MD than the PB group [6.5mm (range 5.0-8.4) vs. 5.3mm (range 4.0-7.0), p < 0.001]. In multivariate logistic regression fully adjusted for confounders, MD was significantly associated with PM outcomes [odds ratio 1.16, 95%CI 1.05-1.31; p = 0.042]. The highest quartile of MD had a greater likelihood of PM outcomes compared to the lowest quartile [odds ratio 4.71, 95% CI 1.97-11.69, p = 0.001]. The RCS analysis identified 6.2 mm as the optimal MD threshold for FNA in TR5 nodules. Conclusion: MD significantly affects the probability of malignant outcomes in FNA of TR5 thyroid nodules. A MD threshold of ≥6.2mm is suggested for FNA in these nodules.


Subject(s)
Thyroid Nodule , Humans , Thyroid Nodule/pathology , Biopsy, Fine-Needle , Female , Male , Retrospective Studies , Middle Aged , Adult , Aged , Aged, 80 and over
9.
Front Cell Infect Microbiol ; 14: 1375312, 2024.
Article in English | MEDLINE | ID: mdl-38779562

ABSTRACT

Competence development is essential for bacterial transformation since it enables bacteria to take up free DNA from the surrounding environment. The regulation of teichoic acid biosynthesis is tightly controlled during pneumococcal competence; however, the mechanism governing this regulation and its impact on transformation remains poorly understood. We demonstrated that a defect in lipoteichoic acid ligase (TacL)-mediated lipoteichoic acids (LTAs) biosynthesis was associated with impaired pneumococcal transformation. Using a fragment of tacL regulatory probe as bait in a DNA pulldown assay, we successfully identified several regulatory proteins, including ComE. Electrophoretic mobility shift assays revealed that phosphomimetic ComE, but not wild-type ComE, exhibited specific binding to the probe. DNase I footprinting assays revealed the specific binding sequences encompassing around 30 base pairs located 31 base pairs upstream from the start codon of tacL. Expression of tacL was found to be upregulated in the ΔcomE strain, and the addition of exogenous competence-stimulating peptide repressed the tacL transcription in the wild-type strain but not the ΔcomE mutant, indicating that ComE exerted a negative regulatory effect on the transcription of tacL. Mutation in the JH2 region of tacL upstream regulatory sequence led to increased LTAs abundance and displayed higher transformation efficiency. Collectively, our work identified the regulatory mechanisms that control LTAs biosynthesis during competence and thereby unveiled a repression mechanism underlying pneumococcal transformation.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Lipopolysaccharides , Streptococcus pneumoniae , Teichoic Acids , Transformation, Bacterial , Teichoic Acids/biosynthesis , Teichoic Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lipopolysaccharides/biosynthesis , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Transcription, Genetic , Promoter Regions, Genetic , DNA Transformation Competence , Mutation , Protein Binding , Ligases/genetics , Ligases/metabolism
10.
Ann Surg Oncol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767805

ABSTRACT

OBJECTIVE: Immunotherapy-tyrosine kinase inhibitor (IO-TKI) therapy has revolutionized the treatment landscape for metastatic clear cell renal cell carcinoma (mccRCC); however, the absence of effective biomarkers poses a challenge in predicting the efficacy of these regimens. This study aims to explore the predictive and prognostic value of serum immunoglobulin A (IgA) in mccRCC patients undergoing IO-TKI therapy. METHODS: Ninety-six mccRCC patients treated with IO-TKI therapy from 2019 to 2023 were enrolled and serum IgA levels were assessed at the pretreatment baseline and after 3 months of treatment. RESULTS: Notably, baseline levels of IgA showed no correlation with the objective response rate. However, patients achieving complete or partial responses exhibited a remarkable decrease in IgA levels, while those with stable or progressive disease displayed an increase in IgA levels after 3 months of treatment. Furthermore, the dynamic alteration in IgA levels after 3 months of treatment demonstrated predictive value for both progression-free survival (PFS) and overall survival (OS). The time-dependent receiver operating characteristic curves exhibited outstanding performance in predicting PFS (AUC 0.793) and OS (AUC 0.738). CONCLUSION: Taken together, this study demonstrates that dynamic alteration of serum IgA after 3 months of treatment was significantly correlated with prognosis and therapeutic efficacy in mccRCC patients.

11.
PLoS One ; 19(5): e0303169, 2024.
Article in English | MEDLINE | ID: mdl-38771770

ABSTRACT

BACKGROUND: Although small studies have shown that flavonoids can affect thyroid disease, few epidemiological studies have explored the relationship between dietary total flavonoids (TFs) intake and serum thyroid function. The aim of this research was to evaluate the relationship between TFs and serum thyroid function. METHODS: Our study included 4,949 adults from the National Health and Nutrition Examination Survey (NHANES) 2007-2010. Multivariable linear regression, subgroup analyses, and interaction terms were used to explore the relationships between TFs and thyroid function. And we also used restricted cubic splines (RCS) to investigate possible nonlinear relationships. RESULTS: After adjusting for covariates, we found that log10-transformated dietary total flavonoids intake (LgTFs) was negatively associated with total thyroxine (TT4) (ß = -0.153, 95% CI = -0.222 to -0.084, P<0.001). Subgroup analyses revealed a stronger and statistically supported association in subjects with high annual family income (ß = -0.367, P<0.001, P for interaction = 0.026) and subjects with high poverty to income ratio (PIR) (ß = -0.622, P<0.001, P for interaction = 0.042). And we found a U-shaped curve association between LgTFs and free triiodothyronine (FT3) (inflection point for LgTFs: 2.063). CONCLUSION: The results of our study demonstrated that a higher intake of total flavonoids in the diet was negatively associated with a lower TT4. Furthermore, the associations were more pronounced in high annual family income and high PIR adults. And we found a U-shaped relationship between LgTFs and FT3. These findings provided guidance for future thyroid dysfunction diet guidelines.


Subject(s)
Diet , Flavonoids , Nutrition Surveys , Thyroid Gland , Humans , Flavonoids/administration & dosage , Male , Female , Adult , Middle Aged , Thyroid Gland/metabolism , Thyroid Gland/physiology , United States , Thyroxine/blood , Thyroid Function Tests
12.
Clin Biomech (Bristol, Avon) ; 116: 106270, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38776646

ABSTRACT

BACKGROUND: A novel interspinous fixation system based on anatomical parameters and incorporating transfacetopedicular screws, was developed to treat degenerative disc diseases. The biomechanical characteristics of the novel system were evaluated using finite element analysis in comparison to other classical interspinous spacers. METHODS: The L1-S1 lumbar spine finite element models were surgically implanted with the novel system, Coflex and DIAM devices at the L4/L5 segment to assess the range of motion, the pression distribution of intervertebral disc, the peak stresses on the spinous process and implant during various motions. FINDINGS: Range of motions of the L4/L5 surgical segment were reduced by 29.13%, 61.27%, 77.35%, 33.33%, and the peak stresses of intervertebral disc were decreased by 36.82%, 67.31%, 73.00%, 69.57% for the novel system in flexion, extension, lateral bending, and axial rotation when compared with the Coflex, and they were declined by 34.53%, 57.86%, 75.81%, 25.21%; 36.22%, 67.31%, 75.01%, 71.40% compared with DIAM. The maximum stresses of the spinous process were 29.93 MPa, 24.66 MPa, 14.45 MPa, 24.37 MPa in the novel system, and those of Coflex and DIAM were 165.3 MPa, 109 MPa, 84.79 MPa, 47.66 MPa and 52.59 MPa, 48.78 MPa, 50.27 MPa, 44.16 MPa during the same condition. INTERPRETATION: Compared to other interspinous spacer devices, the novel interspinous fixation system demonstrated excellent stability, effectively distributing load on the intervertebral disc, and reducing the risk of spinous process fractures. The personalized design of the novel interspinous fixation system could be a viable option for treating degenerative disc diseases.

13.
Int J Biol Macromol ; 271(Pt 1): 132560, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782332

ABSTRACT

Diabetics usually suffer from chronic impaired wound healing due to facile infection, excessive inflammation, diabetic neuropathy, and peripheral vascular disease. Hence, the development of effective diabetic wound therapy remains a critical clinical challenge. Hydrogen sulfide (H2S) regulates inflammation, oxidative stress, and angiogenesis, suggesting a potential role in promoting diabetic wound healing. Herein, we propose a first example of fabricating an antibiotic-free antibacterial protein hydrogel with self-generation of H2S gas (H2S-Hydrogel) for diabetic wound healing by simply mixing bovine serum albumin­gold nanoclusters (BSA-AuNCs) with Bis[tetrakis(hydroxymethyl)phosphonium] sulfate (THPS) at room temperature within a few minutes. In this process, the amino group in BAS and the aldehyde group in THPS are crossed together by Mannich reaction. At the same time, tris(hydroxymethyl) phosphorus (trivalent phosphorus) from THPS hydrolysis could reduce disulfide bonds in BSA to sulfhydryl groups, and then the sulfhydryl group generates H2S gas under the catalysis of BSA-AuNCs. THPS in H2S-Hydrogel can destroy bacterial biofilms, while H2S can inhibit oxidative stress, promote proliferation and migration of epidermal/endothelial cells, increase angiogenesis, and thus significantly increase wound closure. It would open a new perspective on the development of effective diabetic wound dressing.

14.
Nat Plants ; 10(5): 798-814, 2024 May.
Article in English | MEDLINE | ID: mdl-38714768

ABSTRACT

Phytochrome A (phyA) is the plant far-red (FR) light photoreceptor and plays an essential role in regulating photomorphogenic development in FR-rich conditions, such as canopy shade. It has long been observed that phyA is a phosphoprotein in vivo; however, the protein kinases that could phosphorylate phyA remain largely unknown. Here we show that a small protein kinase family, consisting of four members named PHOTOREGULATORY PROTEIN KINASES (PPKs) (also known as MUT9-LIKE KINASES), directly phosphorylate phyA in vitro and in vivo. In addition, TANDEM ZINC-FINGER/PLUS3 (TZP), a recently characterized phyA-interacting protein required for in vivo phosphorylation of phyA, is also directly phosphorylated by PPKs. We reveal that TZP contains two intrinsically disordered regions in its amino-terminal domain that undergo liquid-liquid phase separation (LLPS) upon light exposure. The LLPS of TZP promotes colocalization and interaction between PPKs and phyA, thus facilitating PPK-mediated phosphorylation of phyA in FR light. Our study identifies PPKs as a class of protein kinases mediating the phosphorylation of phyA and demonstrates that the LLPS of TZP contributes significantly to more production of the phosphorylated phyA form in FR light.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome A , Phosphorylation , Phytochrome A/metabolism , Phytochrome A/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Kinases/metabolism , Protein Kinases/genetics , Phase Separation
15.
Opt Lett ; 49(9): 2441-2444, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691739

ABSTRACT

Three-dimensional optical waveguides with hollow channels have many advantages, such as strong mode confinement and excellent dispersion control ability. Femtosecond laser enhanced wet etching is widely used to fabricate hollow channel waveguides in transparent dielectric materials. We propose a method for fabricating hollow channel waveguides in YAG using femtosecond laser enhanced wet etching with a simpler fabrication process and shorter etching time compared with the previous work. After 90 h of etching, a series of helical hollow channel waveguides with a length of 5 mm and a radius of 32 µm were successfully fabricated. At a pitch of 3 µm, the waveguide exhibited a loss (including coupling loss and transmission loss) as low as 0.68 dB at 1030 nm. The helical hollow channel waveguide also exhibited exceptional isotropic light confinement capability and remarkable supercontinuum-generating properties. Moreover, helical hollow channel waveguides with a radius of 2 µm were successfully fabricated. According to simulations, waveguides of such size can effectively control dispersion. Our work presents, to our knowledge, a novel approach to fabricating hollow channel waveguides with arbitrary lengths using femtosecond laser-enhanced wet etching.

16.
Phytomedicine ; 130: 155642, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38759315

ABSTRACT

BACKGROUND: Huangkui capsule (HKC), as an ethanol extract of Abelmoschus manihot (L.), has a significant efficacy in treatment of the patients with diabetic kidney disease (DKD). The bioactive ingredients of HKC mainly include the flavonoids such as rutin, hyperoside, hibifolin, isoquercetin, myricetin, quercetin and quercetin-3-O-robinobioside. PURPOSE: To explore the molecular mechanisms of A. manihot in treatment of DKD. STUDY DESIGN: A single-cell RNA sequencing analysis of kidneys in db/db mice with and without HKC administration. METHODS: Urinary biochemical and histopathological examination in C57BL/6 and db/db mice of DKD and HKC groups was done. Single-cell RNA sequencing pipeline was then performed. The regulatory mechanisms of seven flavonoids in HKC were revealed by cell communication, prediction of transcription factor regulatory network, and molecular docking. RESULTS: By constructing ligand-receptor regulatory network and performing molecular docking between 75 receptors with different activities and seven flavonoids. 11 key receptors in 4 cell types (segment 3 proximal convoluted tubular cell, ascending limbs of the loop of Henle, distal convoluted tubule, and T cell) in kidneys were found to be directly interacted with HKC. The interactions regulated 8 downstream regulons. The docking receptors in T cell led to transcriptional event differences in the regulons such as Cebpb, Rel, Tbx21 and Klf2 and consequently affected the activation, differentiation, and infiltration of T cell, while the receptors Tgfbr1 and Ldlr in stromal cells of kidneys were closely associated with the downstream transcriptional events of renal injury and proteinuria in DKD. CONCLUSION: The current study provides novel information of the key receptors and regulons in renal cells for a better understanding of the cell type specific molecular mechanisms of A. manihot in treatment of DKD.

17.
Metab Eng ; 83: 206-215, 2024 May.
Article in English | MEDLINE | ID: mdl-38710300

ABSTRACT

Shewanella oneidensis MR-1 has found widespread applications in pollutant transformation and bioenergy production, closely tied to its outstanding heme synthesis capabilities. However, this significant biosynthetic potential is still unexploited so far. Here, we turned this bacterium into a highly-efficient bio-factory for green synthesis of 5-Aminolevulinic Acid (5-ALA), an important chemical for broad applications in agriculture, medicine, and the food industries. The native C5 pathway genes of S. oneidensis was employed, together with the introduction of foreign anti-oxidation module, to establish the 5-ALA production module, resulting 87-fold higher 5-ALA yield and drastically enhanced tolerance than the wild type. Furthermore, the metabolic flux was regulated by using CRISPR interference and base editing techniques to suppress the competitive pathways to further improve the 5-ALA titer. The engineered strain exhibited 123-fold higher 5-ALA production capability than the wild type. This study not only provides an appealing new route for 5-ALA biosynthesis, but also presents a multi-dimensional modularized engineering strategy to broaden the application scope of S. oneidensis.


Subject(s)
Aminolevulinic Acid , Metabolic Engineering , Shewanella , Shewanella/genetics , Shewanella/metabolism , Aminolevulinic Acid/metabolism
18.
Exp Eye Res ; 244: 109919, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729254

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.

19.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712298

ABSTRACT

Several classification systems have been developed to define tumor subtypes in colorectal cancer (CRC). One system proposes that tumor heterogeneity derives in part from distinct cancer stem cell populations that co-exist as admixtures of varying proportions. However, the lack of single cell resolution has prohibited a definitive identification of these types of stem cells and therefore any understanding of how each influence tumor phenotypes. Here were report the isolation and characterization of two cancer stem cell subtypes from the SW480 CRC cell line. We find these cancer stem cells are oncogenic versions of the normal Crypt Base Columnar (CBC) and Regenerative Stem Cell (RSC) populations from intestinal crypts and that their gene signatures are consistent with the "Admixture" and other CRC classification systems. Using publicly available single cell RNA sequencing (scRNAseq) data from CRC patients, we determine that RSC and CBC cancer stem cells are commonly co-present in human CRC. To characterize influences on the tumor microenvironment, we develop subtype-specific xenograft models and we define their tumor microenvironments at high resolution via scRNAseq. RSCs create differentiated, inflammatory, slow growing tumors. CBCs create proliferative, undifferentiated, invasive tumors. With this enhanced resolution, we unify current CRC patient classification schema with TME phenotypes and organization.

20.
Respir Med ; 227: 107657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718907

ABSTRACT

BACKGROUND: Fibrotic interstitial lung disease (fILD) is characterised primarily by impaired lung function and quality of life. The present study investigated whether oxygen therapy could improve exercise capacity among patients with fILD. METHODS: Previously published randomised controlled trials (RCTs) were surveyed. A systematic review and meta-analysis was conducted to evaluate the effectiveness of oxygen therapy in improving the exertional capacity of patients with fILD. The primary outcome was peripheral oxygen saturation (SpO2) during exercise. The effects of oxygen therapy on fatigue, dyspnoea, heart rate, and exercise duration or distance were also analysed. RESULTS: Fourteen RCTs involving 370 patients were included. Oxygen therapy improved SpO2 during exercise (mean difference, MD = 6.26 %), exercise duration (MD = 122.15 s), fatigue (standard mean difference, SMD = -0.30), and dyspnoea (MD = -0.75 Borg score units). High-flow oxygen systems tended to be more effective than low-flow systems in improving exercising SpO2, duration, fatigue, dyspnoea, and heart rate. High-flow nasal cannulas (HFNCs) yielded better outcomes regarding SpO2 and fatigue than did high-flow Venturi masks (MD = 1.60 % and MD = -1.19 Borg score units, respectively). No major adverse events were reported. CONCLUSION: The evidence from RCTs supports the short-term use of oxygen supplementation to improve SpO2, exercise capacity, fatigue, and dyspnoea among patients with fILD. Further analyses demonstrates that HFNCs yield more favourable outcomes, yet not reaching statistical significance except for improving SpO2 and fatigue. However, the long-term effects of oxygen therapy on quality of life and mortality remain unclear.


Subject(s)
Dyspnea , Exercise Tolerance , Lung Diseases, Interstitial , Oxygen Inhalation Therapy , Quality of Life , Randomized Controlled Trials as Topic , Humans , Oxygen Inhalation Therapy/methods , Exercise Tolerance/physiology , Lung Diseases, Interstitial/therapy , Lung Diseases, Interstitial/physiopathology , Dyspnea/therapy , Dyspnea/etiology , Oxygen Saturation , Fatigue/therapy , Fatigue/etiology , Male , Female , Heart Rate/physiology , Middle Aged , Treatment Outcome , Aged
SELECTION OF CITATIONS
SEARCH DETAIL