Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters








Publication year range
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 9): 220-227, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39196705

ABSTRACT

M-RAS plays a crucial role in the RAF-MEK signaling pathway. When activated by GTP, M-RAS forms a complex with SHOC2 and PP1C, initiating downstream RAF-MEK signal transduction. In this study, the crystal structure of the GDP-bound human M-RAS protein is presented with two forms of crystal packing. Both the full-length and truncated human M-RAS structures aligned well with the high-confidence section of the AlphaFold2-predicted structure with low r.m.s.d., except for the Switch regions. Despite high sequence similarity to the available mouse M-RAS structure, the full-length human M-RAS structure exhibits unique crystal packing. This inactive human M-RAS structure could offer novel insights for the design of selective compounds targeting M-RAS.


Subject(s)
Guanosine Diphosphate , ras Proteins , Animals , Humans , Mice , Amino Acid Sequence , Binding Sites , Crystallization , Crystallography, X-Ray , Guanosine Diphosphate/metabolism , Guanosine Diphosphate/chemistry , Models, Molecular , Protein Binding , ras Proteins/chemistry , ras Proteins/metabolism , ras Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
2.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 9): 210-219, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39177701

ABSTRACT

Protein tyrosine phosphatase non-receptor type 2 (PTPN2) has recently been recognized as a promising target for cancer immunotherapy. Despite extensive structural and functional studies of other protein tyrosine phosphatases, there is limited structural understanding of PTPN2. Currently, there are only five published PTPN2 structures and none are truly unbound due to the presence of a mutation, an inhibitor or a loop (related to crystal packing) in the active site. In this report, a novel crystal packing is revealed that resulted in a true apo PTPN2 crystal structure with an unbound active site, allowing the active site to be observed in a native apo state for the first time. Key residues related to accommodation in the active site became identifiable upon comparison with previously published PTPN2 structures. Structures of PTPN2 in complex with an established PTPN1 active-site inhibitor and an allosteric inhibitor were achieved through soaking experiments using these apo PTPN2 crystals. The increased structural understanding of apo PTPN2 and the ability to soak in inhibitors will aid the development of future PTPN2 inhibitors.


Subject(s)
Catalytic Domain , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Humans , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Binding Sites , Models, Molecular , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Crystallization , Apoenzymes/chemistry , Apoenzymes/metabolism , Apoenzymes/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
J Med Chem ; 67(16): 14466-14477, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39088797

ABSTRACT

Mesenchymal-epithelial transition factor (MET) is a receptor tyrosine kinase that serves a critical function in numerous developmental, morphogenic, and proliferative signaling pathways. If dysregulated, MET has been shown to be involved in the development and survival of several cancers, including non-small cell lung cancer (NSCLC), renal cancer, and other epithelial tumors. Currently, the clinical efficacy of FDA approved MET inhibitors is limited by on-target acquired resistance, dose-limiting toxicities, and less than optimal efficacy against brain metastasis. Therefore, there is still an unmet medical need for the development of MET inhibitors to address these issues. Herein we report the application of structure-based design for the discovery and development of a novel class of brain-penetrant MET inhibitors with enhanced activity against clinically relevant mutations and improved selectivity. Compound 13 with a MET D1228N cell line IC50 value of 23 nM showed good efficacy in an intracranial tumor model and increased the median overall survival of the animals to 100% when dosed orally at 100 mg/kg daily for 21 days.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met , Pyrazoles , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Humans , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Cell Line, Tumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Drug Discovery , Pyrazines/pharmacology , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Mice , Mutation , Rats
4.
Cancer Discov ; 14(9): 1599-1611, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-38691346

ABSTRACT

RAF inhibitors have transformed treatment for patients with BRAFV600-mutant cancers, but clinical benefit is limited by adaptive induction of ERK signaling, genetic alterations that induce BRAFV600 dimerization, and poor brain penetration. Next-generation pan-RAF dimer inhibitors are limited by a narrow therapeutic index. PF-07799933 (ARRY-440) is a brain-penetrant, selective, pan-mutant BRAF inhibitor. PF-07799933 inhibited signaling in vitro, disrupted endogenous mutant-BRAF:wild-type-CRAF dimers, and spared wild-type ERK signaling. PF-07799933 ± binimetinib inhibited growth of mouse xenograft tumors driven by mutant BRAF that functions as dimers and by BRAFV600E with acquired resistance to current RAF inhibitors. We treated patients with treatment-refractory BRAF-mutant solid tumors in a first-in-human clinical trial (NCT05355701) that utilized a novel, flexible, pharmacokinetics-informed dose escalation design that allowed rapid achievement of PF-07799933 efficacious concentrations. PF-07799933 ± binimetinib was well-tolerated and resulted in multiple confirmed responses, systemically and in the brain, in patients with BRAF-mutant cancer who were refractory to approved RAF inhibitors. Significance: PF-07799933 treatment was associated with antitumor activity against BRAFV600- and non-V600-mutant cancers preclinically and in treatment-refractory patients, and PF-07799933 could be safely combined with a MEK inhibitor. The novel, rapid pharmacokinetics (PK)-informed dose escalation design provides a new paradigm for accelerating the testing of next-generation targeted therapies early in clinical development.


Subject(s)
Drug Resistance, Neoplasm , Mutation , Neoplasms , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Mice , Drug Resistance, Neoplasm/drug effects , Female , Neoplasms/drug therapy , Neoplasms/genetics , Xenograft Model Antitumor Assays , Male , Middle Aged , Benzimidazoles/pharmacokinetics , Benzimidazoles/therapeutic use , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacology , Aged , Adult , Cell Line, Tumor
5.
Cancer Discov ; 13(8): 1789-1801, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37269335

ABSTRACT

Rationally targeted therapies have transformed cancer treatment, but many patients develop resistance through bypass signaling pathway activation. PF-07284892 (ARRY-558) is an allosteric SHP2 inhibitor designed to overcome bypass-signaling-mediated resistance when combined with inhibitors of various oncogenic drivers. Activity in this setting was confirmed in diverse tumor models. Patients with ALK fusion-positive lung cancer, BRAFV600E-mutant colorectal cancer, KRASG12D-mutant ovarian cancer, and ROS1 fusion-positive pancreatic cancer who previously developed targeted therapy resistance were treated with PF-07284892 on the first dose level of a first-in-human clinical trial. After progression on PF-07284892 monotherapy, a novel study design allowed the addition of oncogene-directed targeted therapy that had previously failed. Combination therapy led to rapid tumor and circulating tumor DNA (ctDNA) responses and extended the duration of overall clinical benefit. SIGNIFICANCE: PF-07284892-targeted therapy combinations overcame bypass-signaling-mediated resistance in a clinical setting in which neither component was active on its own. This provides proof of concept of the utility of SHP2 inhibitors in overcoming resistance to diverse targeted therapies and provides a paradigm for accelerated testing of novel drug combinations early in clinical development. See related commentary by Hernando-Calvo and Garralda, p. 1762. This article is highlighted in the In This Issue feature, p. 1749.


Subject(s)
Lung Neoplasms , Protein-Tyrosine Kinases , Humans , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Oncogenes , Patient-Centered Care
6.
Cancer Discov ; 7(9): 963-972, 2017 09.
Article in English | MEDLINE | ID: mdl-28578312

ABSTRACT

Larotrectinib, a selective TRK tyrosine kinase inhibitor (TKI), has demonstrated histology-agnostic efficacy in patients with TRK fusion-positive cancers. Although responses to TRK inhibition can be dramatic and durable, duration of response may eventually be limited by acquired resistance. LOXO-195 is a selective TRK TKI designed to overcome acquired resistance mediated by recurrent kinase domain (solvent front and xDFG) mutations identified in multiple patients who have developed resistance to TRK TKIs. Activity against these acquired mutations was confirmed in enzyme and cell-based assays and in vivo tumor models. As clinical proof of concept, the first 2 patients with TRK fusion-positive cancers who developed acquired resistance mutations on larotrectinib were treated with LOXO-195 on a first-in-human basis, utilizing rapid dose titration guided by pharmacokinetic assessments. This approach led to rapid tumor responses and extended the overall duration of disease control achieved with TRK inhibition in both patients.Significance: LOXO-195 abrogated resistance in TRK fusion-positive cancers that acquired kinase domain mutations, a shared liability with all existing TRK TKIs. This establishes a role for sequential treatment by demonstrating continued TRK dependence and validates a paradigm for the accelerated development of next-generation inhibitors against validated oncogenic targets. Cancer Discov; 7(9); 963-72. ©2017 AACR.See related commentary by Parikh and Corcoran, p. 934This article is highlighted in the In This Issue feature, p. 920.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptor, trkA/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms/genetics , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Receptor, trkA/genetics , Receptor, trkA/metabolism
7.
Sensors (Basel) ; 16(11)2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27834850

ABSTRACT

Conventional methods for the detection of bacterial infection such as DNA or immunoassays are expensive, time consuming, or not definitive and thus may not provide all the information sought by medical professionals. In particular, it is difficult to obtain information about viability or drug effectiveness, which is crucial to formulate a treatment. Bacterial culture tests are the "gold standard" because they are inexpensive and do not require extensive sample preparation, and most importantly, provide all the necessary information sought by healthcare professionals, such as bacterial presence, viability and drug effectiveness. These conventional culture methods, however, have a long turnaround time, anywhere between 1 day and 4 weeks. Here, we solve this problem by monitoring the growth of bacteria in thousands of nanowells simultaneously to more quickly identify their presence in the sample and their viability. The segmentation of a sample with low bacterial concentration into thousands of nanoliter wells digitizes the samples and increases the effective concentration in those wells that contain bacteria. We monitor the metabolism of aerobic bacteria by using an oxygen-sensitive fluorophore, ruthenium tris (2,2'-diprydl) dichloride hexahydrate (RTDP), which allows us to monitor the dissolved oxygen concentration in the nanowells. Using E. coli K12 as a model pathogen, we demonstrate that the detection time of E. coli can be as fast as 35-60 min with sample concentrations varying from 104 (62 min for detection), 106 (42 min) and 108 cells/mL (38 min). More importantly, we also demonstrate that reducing the well size can reduce the detection time. Finally we show that drug effectiveness information can be obtained in this format by loading the wells with the drug and monitoring the metabolism of the bacteria. The method that we have developed is low cost, simple, requires minimal sample preparation and can potentially be used with a wide variety of samples in a resource-poor setting to detect bacterial infections such as tuberculosis.


Subject(s)
Microbial Viability , Microfluidics/methods , Bacteria, Aerobic/physiology , Escherichia coli/physiology , Tuberculosis/microbiology
8.
J Endod ; 41(6): 884-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25749254

ABSTRACT

INTRODUCTION: Thorough understanding of fluid dynamics in root canal irrigation and corresponding antibiofilm capacity will support improved disinfection strategies. This study aimed to develop a standardized, simulated root canal model that allows real-time analysis of fluid/irrigation dynamics and its correlation with biofilm elimination. METHODS: A maxillary incisor with an instrumented root canal was imaged with micro-computed tomography. The canal volume was reconstructed in 3 dimensions and replicated in soft lithography-based models microfabricated from polyethylene glycol-modified polydimethylsiloxane. Canals were irrigated by using a syringe (SI) and 2 ultrasonic-assisted methods, intermittent (IUAI) and continuous (CUAI). Real-time fluid movement within the apical 3 mm of canals was imaged by using microparticle image velocimetry. In similar models, canals were inoculated with Enterococcus faecalis to grow 3-week-old biofilms. Biofilm reduction by irrigation with SI, CUAI, and IUAI was assessed by using a crystal violet assay and compared with an untreated control. RESULTS: SI generated higher velocity and shear stress in the apical 1-2 mm than 0-1 and 2-3 mm. IUAI generated consistently low shear stress in the apical 3 mm. CUAI generated consistently high levels of velocity and shear stress; it was the highest of the groups in the apical 0-1 and 2-3 mm. Biofilm was significantly reduced compared with the control only by CUAI (two-sample permutation test, P = .005). CONCLUSIONS: CUAI exhibited the highest mechanical effects of fluid flow in the apical 3 mm, which correlated with significant biofilm reduction. The soft lithography-based models provided a novel model/method for study of correlations between fluid dynamics and the antibiofilm capacity of root canal irrigation methods.


Subject(s)
Biofilms/drug effects , Root Canal Irrigants/administration & dosage , Root Canal Preparation/methods , Humans , Incisor/drug effects , Incisor/microbiology , Ultrasonics
9.
Artif Organs ; 38(10): 856-66, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24716531

ABSTRACT

A miniaturized oxygenator device that is perfused like an artificial placenta via the umbilical vessels may have significant potential to save the lives of newborns with respiratory insufficiency. Recently we presented the concept of an integrated modular lung assist device (LAD) that consists of stacked microfluidic single oxygenator units (SOUs) and demonstrated the technical details and operation of SOU prototypes. In this article, we present a LAD prototype that is designed to accommodate the different needs of term and preterm infants by permitting changing of the number of parallel-stacked microfluidic SOUs according to the actual body weight. The SOUs are made of polydimethylsiloxane, arranged in parallel, and connected though 3D-printed polymeric interconnects to form the LAD. The flow characteristics and the gas exchange properties were tested in vitro using human blood. We found that the pressure drop of the LAD increased linearly with flow rate. Gas exchange rates of 2.4-3.8 µL/min/cm(2) (0.3-0.5 mL/kg/min) and 6.4-10.1 µL/min/cm(2) (0.8-1.3 mL/kg/min) for O2 and CO2 , respectively, were achieved. We also investigated protein adsorption to provide preliminary information on the need for application of anticoagulant coating of LAD materials. Albumin adsorption, as measured by gold staining, showed that surface uptake was evenly distributed and occurred at the monolayer level (>0.2 µg/cm(2) ). Finally, we also tested the LAD under in vivo conditions using a newborn piglet model (body weight 1.65-2.0 kg). First, the effect of an arteriovenous bypass via a carotid artery-to-jugular vein shortcut on heart rate and blood pressure was investigated. Heart rate and mean arterial blood pressure remained stable for extracorporeal flow rates of up to 61 mL/kg/min (101 mL/min). Next, the LAD was connected to umbilical vessels (maximum flow rate of 24 mL/min [10.4 mL/kg/min]), and O2 gas exchange was measured under hypoxic conditions (Fi O2 = 0.15) and was found to be 3.0 µL/min/cm(2) . These results are encouraging and support the feasibility of an artificial placental design for an LAD.


Subject(s)
Artificial Organs , Equipment Design , Lung/physiopathology , Respiration, Artificial/instrumentation , Respiratory Insufficiency/therapy , Humans , Infant, Newborn , Microfluidics , Pulmonary Gas Exchange/physiology , Respiratory Insufficiency/physiopathology
10.
J Biol Chem ; 289(9): 5809-19, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24366873

ABSTRACT

Saccharomyces cerevisiae uses multiple biosynthetic pathways for the synthesis of phosphatidylethanolamine. One route involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), the transport of this lipid to endosomes, and decarboxylation by PtdSer decarboxylase 2 (Psd2p) to produce phosphatidylethanolamine. Several proteins and protein motifs are known to be required for PtdSer transport to occur, namely the Sec14p homolog PstB2p/Pdr17p; a PtdIns 4-kinase, Stt4p; and a C2 domain of Psd2p. The focus of this work is on defining the protein-protein and protein-lipid interactions of these components. PstB2p interacts with a protein encoded by the uncharacterized gene YPL272C, which we name Pbi1p (PstB2p-interacting 1). PstB2p, Psd2, and Pbi1p were shown to be lipid-binding proteins specific for phosphatidic acid. Pbi1p also interacts with the ER-localized Scs2p, a binding determinant for several peripheral ER proteins. A complex between Psd2p and PstB2p was also detected, and this interaction was facilitated by a cryptic C2 domain at the extreme N terminus of Psd2p (C2-1) as well the previously characterized C2 domain of Psd2p (C2-2). The predicted N-terminal helical region of PstB2p was necessary and sufficient for promoting the interaction with both Psd2p and Pbi1p. Taken together, these results support a model for PtdSer transport involving the docking of a PtdSer donor membrane with an acceptor via specific protein-protein and protein-lipid interactions. Specifically, our model predicts that this process involves an acceptor membrane complex containing the C2 domains of Psd2p, PstB2p, and Pbi1p that ligate to Scs2p and phosphatidic acid present in the donor membrane, forming a zone of apposition that facilitates PtdSer transfer.


Subject(s)
Carboxy-Lyases/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Models, Molecular , Phosphatidylserines/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Biological Transport, Active/physiology , Carboxy-Lyases/genetics , Endoplasmic Reticulum/genetics , Membrane Proteins/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Phosphatidylserines/genetics , Phospholipid Transfer Proteins/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
11.
Int J Artif Organs ; 36(6): 377-91, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23645582

ABSTRACT

Respiratory insufficiency is a major cause of neonatal mortality and long-term morbidity, especially in very low birth weight infants. Today, non-invasive and mechanical ventilation are commonly accepted procedures to provide respiratory support to newborns, but they can reach their limit of efficacy. To overcome this technological plateau and further reduce mortality rates, the technology of an "artificial placenta", which is a pumpless lung assist device connected to the umbilical vessels, would serve to expand the therapeutic spectrum when mechanical ventilation becomes inadequate to treat neonates with severe respiratory insufficiency.
The first attempts to create such an artificial placenta took place more than 60 years ago. However, there has been a recent renaissance of this concept, including developments of its major components like the oxygenator, vascular access via umbilical vessels, flow control, as well as methods to achieve hemocompatibility in extracorporeal circuits. This paper gives a review of past and current development, animal experiments and human case studies of artificial placenta technology.


Subject(s)
Artificial Organs , Infant, Premature , Lung , Placenta , Respiratory Insufficiency/therapy , Animals , Artificial Organs/adverse effects , Equipment Design , Extracorporeal Membrane Oxygenation , Female , Hemodynamics , Humans , Infant, Newborn , Pregnancy , Respiration, Artificial/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/physiopathology , Treatment Outcome
12.
Lab Chip ; 13(13): 2641-50, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23702615

ABSTRACT

This paper reports the development of microfluidic oxygenator (MFO) units designed for a lung assist device (LAD) for newborn infants. This device will be connected to the umbilical vessels like the natural placenta and provide gas exchange. The extracorporeal blood flow is only driven by the pressure difference between the umbilical artery and vein without the use of external pumps. The LAD is designed for use in ambient air (~21% of 760 mmHg). The main focus of this paper is the presentation of the development of the MFO units testing various membrane materials with human blood to enhance gas exchange and in the design of fluidic inlets to lower the pressure drop across the oxygenator. Four different membranes, including thin film PDMS, porous PDMS, and two different pore size porous polycarbonate membranes are compared in this study. Among them, the microfluidic oxygenator with porous PDMS membrane has the highest gas exchange rate of 1.46 µL min(-1) cm(2) for oxygen and 5.27 µL min(-1) cm(2) for carbon dioxide and performs better than a commercial hollow fiber-based oxygenator by 367 and 233%, respectively. A new tapered inlet configuration was designed to reduce the pressure drop across the oxygenator and showed a further 57% improvement over the traditional perpendicular inlet configuration.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Oxygenators , Respiratory Insufficiency/therapy , Carbon Dioxide/metabolism , Dimethylpolysiloxanes/chemistry , Humans , Infant, Newborn , Infant, Premature , Polycarboxylate Cement/chemistry , Respiratory Insufficiency/physiopathology
13.
Proc Natl Acad Sci U S A ; 109(47): 19368-73, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23134728

ABSTRACT

The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain-kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH-KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH-KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH-KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH-KD interface.


Subject(s)
Neoplasms/enzymology , Neoplasms/genetics , Oncogenes/genetics , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/genetics , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Animals , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Enzyme Activation/drug effects , Humans , Mice , Models, Molecular , Mutant Proteins/metabolism , Mutation/genetics , NIH 3T3 Cells , Protein Binding/drug effects , Protein Binding/genetics , Protein Kinase Inhibitors/pharmacology , Protein Transport/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
14.
Sci Signal ; 5(223): ra37, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22569334

ABSTRACT

The protein serine-threonine kinase Akt undergoes a substantial conformational change upon activation, which is induced by the phosphorylation of two critical regulatory residues, threonine 308 and serine 473. Paradoxically, treating cells with adenosine 5'-triphosphate (ATP)-competitive inhibitors of Akt results in increased phosphorylation of both residues. We show that binding of ATP-competitive inhibitors stabilized a conformation in which both phosphorylated sites were inaccessible to phosphatases. ATP binding also produced this protection of the phosphorylated sites, whereas interaction with its hydrolysis product adenosine 5'-diphosphate (ADP) or allosteric Akt inhibitors resulted in increased accessibility of these phosphorylated residues. ATP-competitive inhibitors mimicked ATP by targeting active Akt. Forms of Akt activated by an oncogenic mutation or myristoylation were more potently inhibited by the ATP-competitive inhibitors than was wild-type Akt. These data support a new model of kinase regulation, wherein nucleotides modulate an on-off switch in Akt through conformational changes, which is disrupted by ATP-competitive inhibitors.


Subject(s)
Adenosine Triphosphate/metabolism , Phosphoric Monoester Hydrolases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Adenosine Diphosphate/metabolism , Allosteric Regulation , Binding Sites , Models, Molecular , Phosphorylation
15.
Lab Chip ; 12(5): 960-70, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22273592

ABSTRACT

Protein adsorption on PDMS surfaces poses a significant challenge in microfluidic devices that come into contact with biofluids such as blood. Polyurethane (PU) is often used for the construction of medical devices, but despite having several attractive properties for biointerfacing, it has not been widely used in microfluidic devices. In this work we developed two new fabrication processes for making thin, transparent and flexible PU-based microfluidic devices. Methods for the fabrication and bonding of microchannels, the integration of fluidic interconnections and surface modification with hydrophilic polyethylene oxide (PEO) to reduce protein adsorption are detailed. Using these processes, microchannels were produced having high transparency (96% that of glass in visible light), high bond strength (326.4 kPa) and low protein adsorption (80% reduction in fibrinogen adsorption vs. unmodified PDMS), which is critical for prevention of fouling. Our findings indicate that PEO modified PU could serve as an effective alternative to PDMS in blood contacting microfluidic applications.


Subject(s)
Blood , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Polyurethanes/chemistry , Adsorption , Humans , Microscopy, Electron, Scanning , Molecular Structure , Polyethylene Glycols/chemistry , Proteins/chemistry , Surface Properties
16.
Biomicrofluidics ; 5(1): 13407, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21522497

ABSTRACT

A new method is demonstrated to transport particles, cells, and other microorganisms using rectified ac electro-osmotic flows in open microchannels. The rectified flow is obtained by synchronous zeta potential modulation with the driving potential in the microchannel. Experiments were conducted to transport both neutral, charged particles, and microorganisms of various sizes. A maximum speed of 50 µm∕s was obtained for 8 µm polystyrene beads, without any electrolysis, using a symmetrical square waveform driving electric field of 5 V∕mm at 10 Hz and a 360 V gate potential with its polarity synchronized with the driving potential (phase lag=0°).

17.
Bioorg Med Chem Lett ; 21(8): 2410-4, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21392984

ABSTRACT

A novel series of spirochromane pan-Akt inhibitors is reported. SAR optimization furnished compounds with improved enzyme potencies and excellent selectivity over the related AGC kinase PKA. Attempted replacement of the phenol hinge binder provided compounds with excellent Akt enzyme and cell activities but greatly diminished selectivity over PKA.


Subject(s)
Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Structure-Activity Relationship
19.
ACS Med Chem Lett ; 2(5): 342-7, 2011 May 12.
Article in English | MEDLINE | ID: mdl-24900315

ABSTRACT

The V600E mutation of B-Raf kinase results in constitutive activation of the MAPK signaling pathway and is present in approximately 7% of all cancers. Using structure-based design, a novel series of pyrazolopyridine inhibitors of B-Raf(V600E) was developed. Optimization led to the identification of 3-methoxy pyrazolopyridines 17 and 19, potent, selective, and orally bioavailable agents that inhibited tumor growth in a mouse xenograft model driven by B-Raf(V600E) with no effect on body weight. On the basis of their in vivo efficacy and preliminary safety profiles, 17 and 19 were selected for further preclinical evaluation.

20.
PLoS One ; 5(9): e12913, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20886116

ABSTRACT

AKT1 (NP_005154.2) is a member of the serine/threonine AGC protein kinase family involved in cellular metabolism, growth, proliferation and survival. The three human AKT isozymes are highly homologous multi-domain proteins with both overlapping and distinct cellular functions. Dysregulation of the AKT pathway has been identified in multiple human cancers. Several clinical trials are in progress to test the efficacy of AKT pathway inhibitors in treating cancer. Recently, a series of AKT isozyme-selective allosteric inhibitors have been reported. They require the presence of both the pleckstrin-homology (PH) and kinase domains of AKT, but their binding mode has not yet been elucidated. We present here a 2.7 Å resolution co-crystal structure of human AKT1 containing both the PH and kinase domains with a selective allosteric inhibitor bound in the interface. The structure reveals the interactions between the PH and kinase domains, as well as the critical amino residues that mediate binding of the inhibitor to AKT1. Our work also reveals an intricate balance in the enzymatic regulation of AKT, where the PH domain appears to lock the kinase in an inactive conformation and the kinase domain disrupts the phospholipid binding site of the PH domain. This information advances our knowledge in AKT1 structure and regulation, thereby providing a structural foundation for interpreting the effects of different classes of AKT inhibitors and designing selective ones.


Subject(s)
Down-Regulation , Enzyme Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/chemistry , Allosteric Regulation , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/metabolism , Humans , Molecular Conformation , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL