Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
J Nanobiotechnology ; 22(1): 541, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238002

ABSTRACT

Liver fibrosis is a serious global health issue for which effective treatment remains elusive. Chemical-induced hepatocyte-like cells (ciHeps) have emerged as an appealing source for cell transplantation therapy, although they present several challenges such as the risk of lung thromboembolism or hemorrhage. Apoptotic vesicles (apoVs), small membrane vesicles generated during the apoptosis process, have gained attention for their role in regulating various physiological and pathological processes. In this study, we generated ciHep-derived apoVs (ciHep-apoVs) and investigated their therapeutic potential in alleviating liver fibrosis. Our findings revealed that ciHep-apoVs induced the transformation of macrophages into an anti-inflammatory phenotype, effectively suppressed the activity of activated hepatic stellate cells (aHSCs), and enhanced the survival of hepatocytes. When intravenously administered to mice with liver fibrosis, ciHep-apoVs were primarily engulfed by macrophages and myofibroblasts, leading to a reduction in liver inflammation and fibrosis. Proteomic and miRNA analyses showed that ciHep-apoVs were enriched in various functional molecules that modulate crucial cellular processes, including metabolism, signaling transduction, and ECM-receptor interactions. ciHep-apoVs effectively suppressed aHSCs activity through the synergistic inhibition of glycolysis, the PI3K/AKT/mTOR pathway, and epithelial-to-mesenchymal transition (EMT) cascades. These findings highlight the potential of ciHep-apoVs as multifunctional nanotherapeutics for liver fibrosis and provide insights into the treatment of other liver diseases and fibrosis in other organs.


Subject(s)
Apoptosis , Hepatocytes , Liver Cirrhosis , Animals , Mice , Liver Cirrhosis/pathology , Hepatocytes/metabolism , Fibroblasts/metabolism , Macrophages/metabolism , Hepatic Stellate Cells/metabolism , Signal Transduction , Male , Mice, Inbred C57BL , MicroRNAs/metabolism , MicroRNAs/genetics , RAW 264.7 Cells , Humans
2.
Opt Lett ; 49(16): 4650-4653, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146126

ABSTRACT

In this paper, we propose leveraging null subcarriers in discrete multi-tone modulation (DMT) to process the DMT signal in both time and frequency domains. Additionally, we employ discrete memory enhanced chaos (DMEC) to scramble the signal in the frequency domain, thereby achieving physical layer signal encryption while ensuring a more uniform power distribution in the time-domain waveform. In our experimental demonstration, we achieved high-security transmission of a DSM-based 65536-QAM signal at a data rate of 16.01 Gb/s over a 25 km single-mode fiber (SMF) in an intensity-modulation direct-detection (IMDD) system. Additionally, in the transmission experiments for 13684-QAM and 65536-QAM signals, the proposed method demonstrated a receiver sensitivity gain of over 0.5 dB compared to the traditional DSM-based ultrahigh-order transmission.

3.
J Colloid Interface Sci ; 677(Pt B): 194-204, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39142160

ABSTRACT

NiMoO4 (NM) has garnered significant attention due to its rich d-orbital electronic structure and multivalent electroactive cations. However, the inherently low electrical conductivity of NM limits its reaction kinetics. Herein, cobalt-substituted NM (Co-NM) nanorods were prepared via a hydrothermal reaction followed by subsequent thermal treatment. The incorporation of Ni-O-Co configurations stimulates an enhanced π-donation effect of the Co-O bond, facilitating the hybridization between the O 2p and Co 3d orbitals and thereby boosting charge transfer kinetics during electrochemical processes. The optimized 10 %Co-NM nanorods demonstrated a remarkable specific capacity of 557.8 C·g-1 at 1 A·g-1. Furthermore, an asymmetric supercapacitor constructed with 10 %Co-NM as the positive electrode and FeOOH as the negative electrode, achieved a significant energy density of 63.58 Wh·kg-1 at a power density of 805.38 W·kg-1. Thus, our work provides new insights into the rational design of stable bridging configurations to significantly improve electrochemical reaction kinetics.

4.
J Synchrotron Radiat ; 31(Pt 5): 1189-1196, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39172092

ABSTRACT

The Circular Electron-Positron Collider (CEPC) in China can also work as an excellent powerful synchrotron light source, which can generate high-quality synchrotron radiation. This synchrotron radiation has potential advantages in the medical field as it has a broad spectrum, with energies ranging from visible light to X-rays used in conventional radiotherapy, up to several megaelectronvolts. FLASH radiotherapy is one of the most advanced radiotherapy modalities. It is a radiotherapy method that uses ultra-high dose rate irradiation to achieve the treatment dose in an instant; the ultra-high dose rate used is generally greater than 40 Gy s-1, and this type of radiotherapy can protect normal tissues well. In this paper, the treatment effect of CEPC synchrotron radiation for FLASH radiotherapy was evaluated by simulation. First, a Geant4 simulation was used to build a synchrotron radiation radiotherapy beamline station, and then the dose rate that the CEPC can produce was calculated. A physicochemical model of radiotherapy response kinetics was then established, and a large number of radiotherapy experimental data were comprehensively used to fit and determine the functional relationship between the treatment effect, dose rate and dose. Finally, the macroscopic treatment effect of FLASH radiotherapy was predicted using CEPC synchrotron radiation through the dose rate and the above-mentioned functional relationship. The results show that the synchrotron radiation beam from the CEPC is one of the best beams for FLASH radiotherapy.


Subject(s)
Electrons , Radiotherapy Dosage , Synchrotrons , Humans , Electrons/therapeutic use , Radiotherapy/methods , Radiotherapy/instrumentation , Monte Carlo Method
5.
Opt Lett ; 49(15): 4250-4253, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090906

ABSTRACT

A joint constellation shaping (JCS) three-dimensional (3D) 16-ary modulation scheme constructed with a pair of common-bottomed trigonal cones (CBTC) as primitives is proposed. Compared to the 3D traditional constellation (TC) and the 3D geometric constellation shaping (GS) structure previously proposed by our group (GGS), the constellation figure of merit (CFM) is improved by 0.3906 and 0.0097, respectively. Meanwhile, probabilistic shaping (PS) is employed to optimize the 3D-CBTC-16CAP constellation structure for the second time to enhance the CFM of the constellation further. Compared to the 3D-CBTC-16CAP, after PS the 3D-JCS-16CAP has a CFM improvement of 0.5014. Experiments are carried out to transmit the signals across a 2 km seven-core fiber. At the bit error rate (BER) threshold ∼3.8 × 10-3, the 3D-CBTC-16CAP scheme demonstrates an improvement in the receiver sensitivity by 0.76 and 0.39 dB compared with 3D-TC-16CAP and 3D-GGS-16CAP. In addition, the transmission effect of the signals after joint PS is verified. Experiments show that the proposed 3D-JCS-16CAP scheme has the most significant enhancement effect when used in conjunction with PS, and the receiver sensitivity is improved by about 0.97 and 0.34 dB compared with the 3D-JTC-16CAP (3D-TC-16CAP signal after joint PS) and 3D-JGGS-16CAP (3D-GGS-16CAP signal after the joint PS).

6.
J Cancer Res Ther ; 20(4): 1195-1200, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39206981

ABSTRACT

INTRODUCTION: Elevated plasma D-dimer levels are an unfavorable prognostic indicator for various tumors. However, its predictive value for prognosis in pediatric patients with Wilms tumor (WT) remains unknown. We aimed to investigate the clinical and prognostic value of preoperative plasma D-dimer levels and other clinicopathological characteristics in patients with favorable histology WT (FHWT). MATERIALS AND METHODS: The clinical data of 74 children with FHWT from January 2010 to January 2022 were retrospectively analyzed. The clinicopathologic characteristics, preoperative laboratory parameter results, including D-dimer level, and follow-up data were collected. Based on the postoperative recovery status, the patients were divided into tumor-free survival and disease progression groups. The risk factors affecting disease progression in pediatric patients with WT and the impact of plasma D-dimer levels on overall survival (OS) were evaluated. RESULTS: Over a median follow-up of 33 months (range: 2-145 months), 56 patients survived without progression. Relapses and metastases occurred in 18 patients, of which four survived and 14 died. Higher preoperative plasma D-dimer levels (>0.865) (Odds ratio [OR] = 7.240, 95% confidence interval (CI) = 1.276-33.272, P = 0.011) and tumor rupture (OR = 19.984, 95% CI = 1.182-338.013, P = 0.038) were independent prognostic factors for disease progression. Additionally, patients with elevated D-dimer levels demonstrated a worse 5-year OS than those with low D-dimer levels (Hazard ratio (HR) =4.278, 95% CI = 1.074-17.035, P = 0.039). CONCLUSIONS: Elevated D-dimer levels are a prognostic factor for a poorer outcome in pediatric patients with WT and are expected to become a clinical biomarker for predicting the prognosis of WT.


Subject(s)
Biomarkers, Tumor , Fibrin Fibrinogen Degradation Products , Kidney Neoplasms , Wilms Tumor , Humans , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/metabolism , Male , Female , Prognosis , Child, Preschool , Retrospective Studies , Biomarkers, Tumor/blood , Wilms Tumor/blood , Wilms Tumor/surgery , Wilms Tumor/mortality , Wilms Tumor/pathology , Wilms Tumor/diagnosis , Child , Infant , Kidney Neoplasms/blood , Kidney Neoplasms/surgery , Kidney Neoplasms/mortality , Kidney Neoplasms/pathology , Kidney Neoplasms/diagnosis , Follow-Up Studies , Preoperative Period , Risk Factors , Disease Progression , Survival Rate
7.
Mol Cell ; 84(17): 3336-3353.e7, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39173637

ABSTRACT

NLRP3 inflammasome activation, essential for cytokine secretion and pyroptosis in response to diverse stimuli, is closely associated with various diseases. Upon stimulation, NLRP3 undergoes subcellular membrane trafficking and conformational rearrangements, preparing itself for inflammasome assembly at the microtubule-organizing center (MTOC). Here, we elucidate an orchestrated mechanism underlying these ordered processes using human and murine cells. Specifically, NLRP3 undergoes palmitoylation at two sites by palmitoyl transferase zDHHC1, facilitating its trafficking between subcellular membranes, including the mitochondria, trans-Golgi network (TGN), and endosome. This dynamic trafficking culminates in the localization of NLRP3 to the MTOC, where LATS1/2, pre-recruited to MTOC during priming, phosphorylates NLRP3 to further facilitate its interaction with NIMA-related kinase 7 (NEK7), ultimately leading to full NLRP3 activation. Consistently, Zdhhc1-deficiency mitigated LPS-induced inflammation and conferred protection against mortality in mice. Altogether, our findings provide valuable insights into the regulation of NLRP3 membrane trafficking and inflammasome activation, governed by palmitoylation and phosphorylation events.


Subject(s)
Inflammasomes , Lipoylation , NLR Family, Pyrin Domain-Containing 3 Protein , Protein Transport , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , Inflammasomes/genetics , Animals , Phosphorylation , Humans , Mice , HEK293 Cells , NIMA-Related Kinases/metabolism , NIMA-Related Kinases/genetics , Acyltransferases/metabolism , Acyltransferases/genetics , Microtubule-Organizing Center/metabolism , Mice, Inbred C57BL , trans-Golgi Network/metabolism , Mice, Knockout , Endosomes/metabolism , Mitochondria/metabolism
8.
Opt Lett ; 49(13): 3729-3732, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950253

ABSTRACT

In this paper, a dynamic updated key distribution encryption scheme based on syncretic W band-passive optical network (PON) is proposed. The 102 Gb/s encrypted data rate using 64QAM is successfully transmitted over the 50 m wireless distance under 15% soft-decision forward error correction (SD-FEC) for a pre-FEC bit error rate (BER) threshold of 1.56 × 10-2. The scheme can realize an error-free public key transmission and public key updates up to 1014 times. In the encryption transmission system, there is a small deviation of the private key, and the received BER is more than 0.45. As far as we know, this is the first time to complete a dynamic key distribution based on a syncretic W band-PON system.

9.
PLoS One ; 19(7): e0307686, 2024.
Article in English | MEDLINE | ID: mdl-39078999

ABSTRACT

To ensure optimal use of images while preserving privacy, it is necessary to partition the shared image into public and private areas, with public areas being openly accessible and private areas being shared in a controlled and privacy-preserving manner. Current works only facilitate image-level sharing and use common cryptographic algorithms. To ensure efficient, controlled, and privacy-preserving image sharing at the area level, this paper proposes an image partition security-sharing mechanism based on blockchain and chaotic encryption, which mainly includes a fine-grained access control method based on Attribute-Based Access Control (ABAC) and an image-specific chaotic encryption scheme. The proposed fine-grained access control method employs smart contracts based on the ABAC model to achieve automatic access control for private areas. It employs a Cuckoo filter-based transaction retrieval technique to enhance the efficiency of smart contracts in retrieving security attributes and policies on the blockchain. The proposed chaotic encryption scheme generates keys based on the private areas' security attributes, largely reducing the number of keys required. It also provides efficient encryption with vector operation acceleration. The security analysis and performance evaluation were conducted comprehensively. The results show that the proposed mechanism has lower time overhead than current works as the number of images increases.


Subject(s)
Algorithms , Blockchain , Computer Security , Privacy
10.
Opt Express ; 32(11): 19019-19033, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859046

ABSTRACT

In order to guarantee the information of the W-band wireless communication system from the physical layer, this paper proposes the sliced chaotic encrypted (SCE) transmission scheme based on key masked distribution (KMD). The scheme improves the security of free space communication in the W-band millimeter-wave wireless data transmission system. In this scheme, the key information is embedded into the random position of the ciphertext information, and then the ciphertext carrying the key information is encrypted by multi-dimensional chaos. Chaotic system 1 constructs a three-dimensional discrete chaotic map for implementing KMD. Chaotic system 2 constructs complex nonlinear dynamic behavior through the coupling of two neurons, and the masking factor generated is used to realize SCE. In this paper, the transmission of 16QAM signals in a 4.5 m W-band millimeter-wave wireless communication system with a rate of 40 Gb/s is proved by experiments, and the performance of the system is analyzed. When the input optical power is 5 dBm, the bit error rate (BER) of the legitimate encrypted receiver is 1.23 × 10-3. When the offset of chaotic sequence x and chaotic sequence y is 100, their BERs are more than 0.21. The key space of the chaotic system reaches 10192, which can effectively prevent illegal attacks and improve the security performance of the system. The experimental results show that the scheme can effectively distribute the keys and improve the security of the system. It has great application potential in the future of W-band millimeter-wave wireless secure communication.

11.
Opt Express ; 32(11): 19438-19448, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859078

ABSTRACT

In this paper, a secure orthogonal time-frequency space (OTFS) modulation transmission system based on 3D dense constellation mapping (DCM) geometric shaping is proposed, and a selective reduction amplitude algorithm (SRA) for DCM to reduce peak average power ratio (PAPR) is presented. The DCM is based on regular tetrahedron construction to improve its space utilization efficiency. The proposed SRA involves reducing high PAPRs transmitter and restoring them at the receiving end, which only requires an additional 0.57% of the total transmission capacity. The algorithm reduces PAPR while ensuring the bit error rate performance of the system, so it is suitable for systems that need to process large amounts of transmitted data quickly. By verifying the actual transmission performance on a 2 km of 7-core optical fiber transmission system, the optical transmission with a bit rate of 33.93Gb/s is achieved. The experimental results show that when the bit error rate (BER) reaches the 3.8×10-3 threshold, the OTFS system using DCM and SRA could improve the receiver sensitivity by 3.7 dB compared with the OTFS system using concentric cube mapping and SRA, and 2.7 dB compared with the OFDM system using DCM. After adding the SRA, the PAPR of the OTFS system is reduced by more than 2.2 dB. When the received optical power reaches near the bit error rate threshold, the SRA valid data can be fully recovered by optimizing the SRA.

12.
Opt Express ; 32(11): 19984-19998, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859118

ABSTRACT

This paper proposes a high-security multidimensional data protection system based on the Hartley algorithm-driven chaotic scheme. We utilize the fast Hartley algorithm instead of the fast fourier computation, and we employ chaotic sequences generated by the multi-winged chaotic system to achieve chaos-driven 3D constellation mapping, effectively integrating the chaotic system with the stochastic amplitude modulator. We reduce the signal's peak-to-average power ratio (PAPR) by deploying a random amplitude modulator. Simultaneously, this approach enhances the security of the physical layer of the signal. The PAPR reduction can reach up to 2.6 dB, while the most robust and stable modulator scheme can gain 2 dB. Finally, in the Hartley frequency domain, the signal's frequency is disrupted, providing the entire system with a key space of 10131 to resist violent cracking and thus improving the system's overall security. To validate the feasibility of our scheme in comparison to conventional IFFT-based encrypted 3D orthogonal frequency division multiplexing, We achieved a transmission rate of 27.94 Gb/s over a 2 km multicore fiber. Experimental results show that since the random amplitude generator effectively reduces PAPR, our proposed encryption scheme increases the forward error correction threshold range by 1.1 dB, verifying that our proposed scheme has highly reliable security performance.

13.
Opt Express ; 32(9): 15053-15064, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859165

ABSTRACT

The purpose of this study is to present a physical layer security scheme for key concealment and distribution based on carrier scrambling. The three-dimensional (3D) Lorenz system is used to generate independent chaotic sequences that encrypt the information with bit, constellation and subcarrier. In order to realize the flexible distribution of the key and ensure its security, the key information is loaded into a specific subcarrier. While key subcarrier and the ciphertext subcarrier are scrambled simultaneously. The encrypted key position information is processed and transmitted in conjunction with the training sequence (TS) to facilitate demodulation by the legitimate receiver. The processed TS can accommodate up to 10 key position information, thereby demonstrating the scheme's exceptional scalability. Experimental results show that the proposed scheme can safely transmit 131.80 Gb/s Orthogonal frequency division multiplexing (OFDM) signals across 2 km 7-core fiber. Meanwhile, the scheme enables simultaneous flexible distribution and concealment of the key, thereby offering a promising solution for physical layer security.

14.
Opt Express ; 32(12): 20515-20527, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859432

ABSTRACT

In this paper, we propose a method for training a key-enhanced chaotic sequence using the convolutional long short term memory neural network (CLSTM-NN) for secure transmission. This method can cope with the potential security risk posed by the degradation of chaotic dynamics when using chaotic model encryption in traditional secure transmissions. The simulation results show that the proposed method improves the key space by 1036 compared to traditional chaotic models, reaching 10241. The method was applied to orthogonal chirp division multiplexing (OCDM). To demonstrate the feasibility of the proposed scheme, we conducted transmission experiments of encrypted 16 quadrature amplitude modulation (QAM) OCDM signals at a speed of 53.25 Gb/s over a 2 km length of 7-core optical fiber and test different encryption schemes. After key enhancements, the overall number of keys in the system can increase from 18 to 105.The results show that there is no significant difference between the bit error rate (BER) performance of the encryption method proposed in this paper and the traditional encryption method. The maximum performance difference between the different systems does not exceed 1 dBm. This fact proves the feasibility of the proposed scheme and provides new ideas for the next generation of secure transmission.

16.
Opt Lett ; 49(12): 3444-3447, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38875641

ABSTRACT

In this Letter, we propose a method for ultrahigh-order QAM secure transmission and key distribution based on delta-sigma modulation (DSM) and discrete memristive-enhanced chaos (DMEC). The disturbance vectors generated by the DMEC scramble the DSM signals in both frequency and time domains, resulting in highly secure DSM signals. Through the key modulation and power adjustment and then superimposing them on the encrypted signals, the method achieves simultaneous transmission of keys and signals without the need for additional spectral resources. This approach allows for secure communication with continuous key iteration and updates, offering an effective solution for implementing "one-time pad" encryption. In the experimental demonstration, we achieved a secure transmission and key distribution of a 16384QAM signal at a rate of 17.09 Gb/s over 25 km in an intensity-modulated direct detection (IMDD) system, based on DSM.

17.
Animals (Basel) ; 14(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731380

ABSTRACT

Mitochondrial genomes are playing an increasingly important role in molluscan taxonomy, germplasm, and evolution studies. The first complete mitochondrial genome of the commercial big brown mactra clam, Mactra grandis, was characterized using Illumina next-generation sequencing in this study. The 17,289 bp circular genome has a typical gene organization of 13 protein-coding genes (PCGs), 2 rRNAs, and 22 tRNAs, with an obvious (A + T)-bias of 64.54%. All PCGs exhibited a homogeneous bias in nucleotide composition with a (A + T)-bias, a positive GC skew, and a negative AT skew. Results of phylogenetic analysis showed that Mactra grandis was most closely related to Mactra cygnus. The functional gene arrangement of the two species was identical but different from other Mactra species. The congeneric relationships among Mactra species were demonstrated by genetic distance analysis. Additionally, the selective pressure analysis suggested that cox1 was highly efficient for discriminating closely related species in genus Mactra, while nad2 was the most appropriate marker for population genetic analysis.

18.
Theor Appl Genet ; 137(6): 133, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753199

ABSTRACT

KEY MESSAGE: This study found that three paralogous R2R3-MYB transcription factors exhibit functional divergence among different subspecies and cultivated types in radish. Cultivated radish taproots exhibit a wide range of color variations due to unique anthocyanin accumulation patterns in various tissues. This study investigated the universal principles of taproot color regulation that developed during domestication of different subspecies and cultivated types. The key candidate genes RsMYB1 and RsMYB2, which control anthocyanin accumulation in radish taproots, were identified using bulked segregant analysis in two genetic populations. We introduced the RsMYB1-RsF3'H-RsMYB1Met genetic model to elucidate the complex and unstable genetic regulation of taproot flesh color in Xinlimei radish. Furthermore, we analyzed the expression patterns of three R2R3-MYB transcription factors in lines with different taproot colors and investigated the relationship between RsMYB haplotypes and anthocyanin accumulation in a natural population of 56 germplasms. The results revealed that three paralogous RsMYBs underwent functional divergence during radish domestication, with RsMYB1 regulating the red flesh of Xinlimei radish, and RsMYB2 and RsMYB3 regulating the red skin of East Asian big long radish (R. sativus var. hortensis) and European small radish (R. sativus var. sativus), respectively. Moreover, RsMYB1-H1, RsMYB2-H10, and RsMYB3-H6 were identified as the primary haplotypes exerting regulatory functions on anthocyanin synthesis. These findings provide an understanding of the genetic mechanisms regulating anthocyanin synthesis in radish and offer a potential strategy for early prediction of color variations in breeding programs.


Subject(s)
Pigmentation , Plant Proteins , Raphanus , Transcription Factors , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Epigenesis, Genetic , Gene Expression Regulation, Plant , Haplotypes , Phenotype , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Raphanus/genetics , Raphanus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Opt Express ; 32(6): 9671-9685, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571196

ABSTRACT

In this paper, we propose a high spectral efficiency modulation scheme based on joint interaction of orthogonal compressed chirp division multiplexing (OCCDM) and power superimposed code (PSC) under the intensity modulation and direct detection (IM/DD) system. OCCDM is a novel orthogonal chirp division multiplexing technology featuring spectral compression through the implementation of processing similar to a discrete Fourier transform, enhancing the spectral efficiency (SE) through bandwidth savings without loss of orthogonality of each chirp. Meanwhile, PSC technology enables multiple code words being transmitted superimposed on the same chirp. This technique involves allocating varying power levels to different users, thereby distinguishing them, increasing the transmission's net bit rate and substantially boosting the SE. The transmission has been performed experimentally using a 2 km 7-core fiber span. The impact of the above-mentioned technologies on the bit error rate (BER) performance is assessed in the power, frequency, and joint domain. The BER and enhancements in the SE can be balanced when the spectral bandwidth compression factor (α) and power distribution ratio are equal to 0.9 and 4, respectively. The observed outcome leads to the transmission's SE increase to more than double the baseline value, at 2.22 times. Based on the above analysis, we believe this structure is expected to become a potential for developing next-generation PON.

20.
BMC Surg ; 24(1): 104, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609936

ABSTRACT

BACKGROUND: To compare the outcomes of hypospadias repair using tubularized incised plate (TIP) urethroplasty and modified TIP with lateral skin to widen the urethral plate (WTIP). MATERIALS AND METHODS: Data were obtained from pre-pubertal boys who underwent primary hypospadias repair between May 2018 and July 2023. The cases were divided into two groups; one group underwent TIP with urethral plate ≥ 6 mm width and the other group with urethral plate width < 6 mm underwent WTIP. WTIP urethroplasty was performed by widening incisions on the outer margins of the urethral plate to incorporate penile and glandular skin lateral to the urethral plate to facilitate tubularization. Complication rates and urinary functions were compared. RESULTS: A total of 157 patients were enrolled in this study. Eighty-eight cases with narrow urethral plate were subjected to WTIP urethroplasty, and the rest were subjected to TIP urethroplasty. The preoperative glans width in WTIP group was less than that in TIP group (P < 0.001), and 44.3% had midshaft meatus in WTIP group compared to 17.4% in TIP group (P < 0.001). However, the incidences of postoperative complications (17.6% vs. 21.6%, P = 0.550) were not statistically different between the TIP and WTIP groups. In addition, both groups did not differ significantly in postoperative uroflowmetry assessment. CONCLUSIONS: The described technique helps to create an adequately caliber aesthetic neomeatus and facilitates tubularization, especially in hypospadias with a narrow urethral plate. Our data suggest that augmentation of a narrow urethral plate with WTIP has a similar surgical outcome to that of the TIP procedure in patients with a wide urethral plate.


Subject(s)
Hypospadias , Plastic Surgery Procedures , Male , Humans , Hypospadias/surgery , Penis/surgery , Skin , Esthetics , Cytoskeletal Proteins , Co-Repressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL