Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38412073

ABSTRACT

Atrial Fibrillation (AF) screening from face videos has become popular with the trend of telemedicine and telehealth in recent years. In this study, the largest facial image database for camera-based AF detection is proposed. There are 657 participants from two clinical sites and each of them is recorded for about 10 minutes of video data, which can be further processed as over 10,000 segments around 30 seconds, where the duration setting is referred to the guideline of AF diagnosis. It is also worth noting that, 2,979 segments are segment-wise labeled, that is, every rhythm is independently labeled with AF or not. Besides, all labels are confirmed by the cardiologist manually. Various environments, talking, facial expressions, and head movements are involved in data collection, which meets the situations in practical usage. Specific to camera-based AF screening, a novel CNN-based architecture equipped with an attention mechanism is proposed. It is capable of fusing heartbeat consistency, heart rate variability derived from remote photoplethysmography, and motion features simultaneously to reliable outputs. With the proposed model, the performance of intra-database evaluation comes up to 96.62% of sensitivity, 90.61% of specificity, and 0.96 of AUC. Furthermore, to check the capability of adaptation of the proposed method thoroughly, the cross-database evaluation is also conducted, and the performance also reaches about 90% on average with the AUCs being over 0.94 in both clinical sites.

2.
IEEE J Biomed Health Inform ; 28(2): 621-632, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37037253

ABSTRACT

Remote photoplethysmography (rPPG) has been used to measure vital signs such as heart rate, heart rate variability, blood pressure (BP), and blood oxygen. Recent studies adopt features developed with photoplethysmography (PPG) to achieve contactless BP measurement via rPPG. These features can be classified into two groups: time or phase differences from multiple signals, or waveform feature analysis from a single signal. Here we devise a solution to extract the time difference information from the rPPG signal captured at 30 FPS. We also propose a deep learning model architecture to estimate BP from the extracted features. To prevent overfitting and compensate for the lack of data, we leverage a multi-model design and generate synthetic data. We also use subject information related to BP to assist in model learning. For real-world usage, the subject information is replaced with values estimated from face images, with performance that is still better than the state-of-the-art. To our best knowledge, the improvements can be achieved because of: 1) the model selection with estimated subject information, 2) replacing the estimated subject information with the real one, 3) the InfoGAN assistance training (synthetic data generation), and 4) the time difference features as model input. To evaluate the performance of the proposed method, we conduct a series of experiments, including dynamic BP measurement for many single subjects and nighttime BP measurement with infrared lighting. Our approach reduces the MAE from 15.49 to 8.78 mmHg for systolic blood pressure (SBP) and 10.56 to 6.16 mmHg for diastolic blood pressure(DBP) on a self-constructed rPPG dataset. On the Taipei Veterans General Hospital(TVGH) dataset for nighttime applications, the MAE is reduced from 21.58 to 11.12 mmHg for SBP and 9.74 to 7.59 mmHg for DBP, with improvement ratios of 48.47% and 22.07% respectively.


Subject(s)
Blood Pressure Determination , Photoplethysmography , Humans , Blood Pressure , Photoplethysmography/methods , Blood Pressure Determination/methods , Heart Rate , Infrared Rays
SELECTION OF CITATIONS
SEARCH DETAIL