Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 831
Filter
1.
Food Chem ; 460(Pt 2): 140706, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39096800

ABSTRACT

Curcumin might exert its therapeutic effects by interacting with gut microbiota. However, the role of gut microbiota in curcumin metabolism in vivo remains poorly understood. To address this, we used antibiotics to deplete gut microbiota and compared curcumin metabolism in control and antibiotic-treated mice. Using Q-TOF and triple quadrupole mass spectrometry, we identified and quantified curcumin metabolites, revealing distinct metabolic pathways in these two mice groups. The novel metabolites, hexahydro-dimethyl-curcumin and hexahydro-didemethyl-curcumin were exclusively derived from gut microbiota. Additionally, gut bacteria deconjugated curcumin metabolites back into their bioactive forms. Moreover, control mice exhibited significantly lower curcumin degradation, suggesting a protective role of gut microbiota against degradation. In conclusion, our results indicated that gut microbiota might enhance the effectiveness of curcumin by deconjugation, production of active metabolites, and protection against degradation in the large intestine. This study enhances our understanding of the interactions between curcumin and gut microbiota.

2.
Food Chem X ; 23: 101636, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39113734

ABSTRACT

Emulsion gels mimic the rheological properties of solid and semi-solid fats, offering a viable solution to replace conventional fats in low-fat food formulations. In this study, gel emulsions stabilized with stigmasterol (ST) and polyglycerol polyricinoleate (PGPR) complexes were prepared. Initially, we examined the effect of the ST/PGPR complex on the mechanism of gel emulsion stabilization. Our findings revealed that the gel emulsion formulated with 3% PGPR and ST exhibited a robust structure, effectively stabilizing the entire system and ensuring uniform distribution, and increasing ST concentration led to greater stability of the gel emulsion system. Stability assessments demonstrated that gel emulsions containing 3% PGPR and varying ST concentrations exhibited remarkable thermal stability and effectively delayed oil oxidation. These results underscore the high stability of gel emulsions stabilized with the ST/PGPR complex, highlighting their potential as a margarine substitute.

3.
Alzheimers Dement ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073196

ABSTRACT

INTRODUCTION: Altered neurometabolism, detectable via proton magnetic resonance spectroscopic imaging (1H-MRSI), is spatially heterogeneous and underpins cognitive impairments in Alzheimer's disease (AD). However, the spatial relationships between neurometabolic topography and cognitive impairment in AD remain unexplored due to technical limitations. METHODS: We used a novel whole-brain high-resolution 1H-MRSI technique, with simultaneously acquired 18F-florbetapir positron emission tomography (PET) imaging, to investigate the relationship between neurometabolic topography and cognitive functions in 117 participants, including 22 prodromal AD, 51 AD dementia, and 44 controls. RESULTS: Prodromal AD and AD dementia patients exhibited spatially distinct reductions in N-acetylaspartate, and increases in myo-inositol. Reduced N-acetylaspartate and increased myo-inositol were associated with worse global cognitive performance, and N-acetylaspartate correlated with five specific cognitive scores. Neurometabolic topography provides biological insights into diverse cognitive dysfunctions. DISCUSSION: Whole-brain high-resolution 1H-MRSI revealed spatially distinct neurometabolic topographies associated with cognitive decline in AD, suggesting potential for noninvasive brain metabolic imaging to track AD progression. HIGHLIGHTS: Whole-brain high-resolution 1H-MRSI unveils neurometabolic topography in AD. Spatially distinct reductions in NAA, and increases in mI, are demonstrated. NAA and mI topography correlates with global cognitive performance. NAA topography correlates with specific cognitive performance.

4.
Bull Environ Contam Toxicol ; 113(2): 16, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068285

ABSTRACT

In recent years, the coastal area in East China has experienced elevated volatile organic compounds (VOCs) levels during specific periods. VOCs have become one of the major atmospheric pollutants in these areas. In this study, 64 compounds including alkanes, alkenes, halohydrocarbons, aromatics, and oxygenated VOCs (OVOCs) were obtained by the TO-15 method through a 12-month campaign in industrial, urban and suburban areas in the Yangtze River Delta of China. The overall trends of total VOC (TVOC) concentrations at eight sampling sites were as follows: winter > autumn > spring > summer. The proportion of VOC categories was various at industrial sites, while OVOCs and halohydrocarbons had high proportions at urban sites and suburban sites, respectively. Coating, vehicle emission, petrochemical source, industrial source, and gasoline volatilization were identified as the major VOC emission sources by the positive matrix factorization model. Petrochemical and coating sources were the prime VOC sources at industrial sites. Aromatics contributed the most ozone formation potential at industrial sites, while OVOCs provided the main contributions at both urban and suburban sites during four seasons. According to the health risk assessment, a high probability of non-carcinogenic risk existed at three industrial sites. Special attention should be given to certain VOCs, such as acrolein and 1,2-dibromoethane in industrial areas.


Subject(s)
Air Pollutants , Environmental Monitoring , Volatile Organic Compounds , Volatile Organic Compounds/analysis , China , Air Pollutants/analysis , Rivers/chemistry , Seasons , Industry
5.
Foods ; 13(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063377

ABSTRACT

Deep eutectic solvents (DESs) have received extensive attention in green chemistry because of their ease of preparation, cost-effectiveness, and low toxicity. Pickering emulsions offer advantages such as long-term stability, low toxicity, and environmental friendliness. The oil phase in some Pickering emulsions is composed of solvents, and DESs can serve as a more effective alternative to these solvents. The combination of DESs and Pickering emulsions can improve the applications of green chemistry by reducing the use of harmful chemicals and enhancing sustainability. In this study, a Pickering emulsion consisting of a DES (menthol:octanoic acid = 1:1) in water was prepared and stabilized using starch nanoparticles (SNPs). The emulsion was thoroughly characterized using various techniques, including optical microscopy, transmission microscopy, laser particle size analysis, and rheological measurements. The results demonstrated that the DES-in-water Pickering emulsion stabilized by the SNPs had excellent stability and retained its structural integrity for more than 200 days at room temperature (20 °C). This prolonged stability has significant implications for many applications, particularly in the field of storage and transportation. This Pickering emulsion based on DESs and SNPs is sustainable and stable, and it has great potential to improve green chemistry practices in various fields.

6.
Food Chem ; 458: 140195, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38954951

ABSTRACT

Pleurotus eryngii, an edible mushroom recognized for its potent polysaccharides, demonstrates significant regulatory effects on metabolic processes. ß-glucan (WPEP) derived from P. eryngii has been noted for its therapeutic potential, exhibiting notable benefits in alleviating colonic inflammation and restructuring gut microbiota in mice treated with dextran sodium sulfate (DSS). This study focuses on utilizing DSS-induced colitis mice to explore the efficacy and underlying mechanisms of WPEP in ameliorating colitis, employing a metabolomics approach analyzing urine and serum. The findings reveal that WPEP administration effectively regulates metabolic imbalances in DSS mice, impacting purine metabolism, pentose and glucuronic acid interconversion, amino acid metabolism, primary bile acid biosynthesis, citric acid cycle, and lipid metabolism. Furthermore, WPEP demonstrates a capacity to modulate colitis by regulating diverse metabolic pathways, consequently influencing intestinal barrier integrity, motility, inflammation, oxidative stress, and immunity. These insights suggest that WPEP is a promising food component for managing inflammatory bowel diseases.

7.
J Hazard Mater ; 477: 135295, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047556

ABSTRACT

Landfill leachate contributes significantly to the presence of pharmaceuticals and personal care products (PPCPs) in the environment, and is a crucial source of contamination. To examine the occurrence of PPCPs and microbial communities, this study comprehensively investigated the concentrations of PPCPs and the abundance of microorganisms in the leachate from 17 municipal landfills across China. Generally, Lidocaine, Linear alkylbenzene sulfonate-C11, and Triclocarban, which are closely associated with human activities, exhibited a detection frequency of 100 % in the leachate. Driven by consumer demand, analgesic and antipyretic drugs have emerged as the most prominent PPCPs in leachate (accounting for 39.9 %). Notably, the Ibuprofen peaked at 56.3 µg/L. Regarding spatial distribution, the contamination of PPCPs in leachates from the eastern regions of China was significantly higher than that in other regions, owing to the level of economic development and demographic factors. Furthermore, the 16S rRNA results revealed significant differences in microbial communities among the leachates from different areas. Although the impact of PPCPs on microbial communities may not be as significant as that of environmental factors, most positive correlations between PPCPs and microorganisms indicate their potential role in providing nutrients and creating favorable conditions for microbial growth. Overall, this research offers new perspectives on the residual features of PPCPs and the microbial community structure in leachates from various regions in China.

8.
Toxics ; 12(7)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39058157

ABSTRACT

Phthalate acid esters (PAEs) are one of the most widely used plasticizers globally, extensively employed in various decoration materials. However, studies on the impact of these materials on indoor environmental PAE pollution and their effects on human health are limited. In this study, forty dust samples were collected from four types of stores specializing in decoration materials (flooring, furniture boards, wall coverings, and household articles). The levels, sources, exposure doses, and potential health risks of PAEs in dust from decoration material stores were assessed. The total concentrations of Σ9PAE (the sum of nine PAEs) in dust from all decoration-material stores ranged from 46,100 ng/g to 695,000 ng/g, with a median concentration of 146,000 ng/g. DMP, DEP, DBP, and DEHP were identified as the predominant components. Among all stores, furniture board stores exhibited the highest Σ9PAE (159,000 ng/g, median value), while flooring stores exhibited the lowest (95,300 ng/g). Principal component analysis (PCA) showed that decoration materials are important sources of PAEs in the indoor environment. The estimated daily intakes of PAEs through non-dietary dust ingestion and dermal-absorption pathways among staff in various decoration-material stores were 60.0 and 0.470 ng/kg-bw/day (flooring stores), 113 and 0.780 ng/kg-bw/day (furniture board stores), 102 and 0.510 ng/kg-bw/day (wall covering stores), and 114 and 0.710 ng/kg-bw/day (household article stores). Particularly, staff in wall-covering and furniture-board stores exhibited relatively higher exposure doses of DEHP. Risk assessment indicated that although certain PAEs posed potential health risks, the exposure levels for staff in decoration material stores were within acceptable limits. However, staff in wall covering stores exhibited relatively higher risks, necessitating targeted risk-management strategies. This study provides new insights into understanding the risk associated with PAEs in indoor environments.

9.
Neuroimage ; 297: 120708, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38950664

ABSTRACT

Acting as a central hub in regulating brain functions, the thalamus plays a pivotal role in controlling high-order brain functions. Considering the impact of preterm birth on infant brain development, traditional studies focused on the overall development of thalamus other than its subregions. In this study, we compared the volumetric growth and shape development of the thalamic hemispheres between the infants born preterm and full-term (Left volume: P = 0.027, Left normalized volume: P < 0.0001; Right volume: P = 0.070, Right normalized volume: P < 0.0001). The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus exhibit higher vulnerability to alterations induced by preterm birth. The structural covariance (SC) between the thickness of thalamus and insula in preterm infants (Left: corrected P = 0.0091, Right: corrected P = 0.0119) showed significant increase as compared to full-term controls. Current findings suggest that preterm birth affects the development of the thalamus and has differential effects on its subregions. The ventral nucleus region, dorsomedial nucleus region, and posterior nucleus region of the thalamus are more susceptible to the impacts of preterm birth.


Subject(s)
Infant, Premature , Magnetic Resonance Imaging , Thalamus , Humans , Thalamus/growth & development , Thalamus/diagnostic imaging , Female , Male , Infant, Newborn , Infant, Premature/growth & development , Premature Birth/pathology
10.
J Magn Reson ; 365: 107730, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38981307

ABSTRACT

Solid-state nuclear magnetic resonance (NMR) is a potent tool for studying the structures and dynamics of insoluble proteins. It starts with signal assignment through multi-dimensional correlation experiments, where the aliphatic 13Cα-13Cß correlation is indispensable for identifying specific residues. However, developing efficient methods for achieving this correlation is a challenge in solid-state NMR. We present a simple band-selective zero-quantum (ZQ) recoupling method, named POST-C4161 (PC4), which enhances 13Cα-13Cß correlations under moderate magic-angle spinning (MAS) conditions. PC4 requires minimal 13C radio-frequency (RF) field and proton decoupling, exhibits high stability against RF variations, and achieves superior efficiency. Comparative tests on various samples, including the formyl-Met-Leu-Phe (fMLF) tripeptide, microcrystalline ß1 immunoglobulin binding domain of protein G (GB1), and membrane protein of mechanosensitive channel of large conductance from Methanosarcina acetivorans (MaMscL), demonstrate that PC4 selectively enhances 13Cα-13Cß correlations by up to 50 % while suppressing unwanted correlations, as compared to the popular dipolar-assisted rotational resonance (DARR). It has addressed the long-standing need for selective 13C-13C correlation methods. We anticipate that this simple but efficient PC4 method will have immediate applications in structural biology by solid-state NMR.

11.
Food Chem ; 459: 140346, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981378

ABSTRACT

Phyllanthus emblica L. offers promising therapeutic potential for inflammatory diseases. This study revealed the molecular structure of a homogeneous polysaccharide purified from Phyllanthus emblica L. (PEP-1) and evaluated its anti-inflammatory effects on ulcerative colitis (UC) in mice. In the in vivo experiment, administered in varying dosages to dextran sulfate sodium (DSS)-induced UC models, PEP-1 significantly alleviated colonic symptoms, histological damages and reshaped the gut microbiota. Notably, it adjusted the Firmicutes/Bacteroidetes ratio and reduced pro-inflammatory species, closely aligning with shifts in the fecal metabolites and metabolic pathways such as the metabolism of pyrimidine, beta-alanine, and purine. These findings underscore the potential of PEP-1 as a therapeutic agent for UC, providing insights into the mechanisms through gut microbiota and metabolic modulation.

12.
Front Oncol ; 14: 1404135, 2024.
Article in English | MEDLINE | ID: mdl-38962277

ABSTRACT

Background: High BMI (Body Mass Index) is a significant factor impacting health, with a clear link to an increased risk of leukemia. Research on this topic is limited. Understanding the epidemiological trends of leukemia attributable to high BMI risk is crucial for disease prevention and patient support. Methods: We obtained the data from the Global Burden of Disease Study, analyzing the ASR (age-standardized rates), including ASDR (age-standardized death rate) and age-standardized disability-adjusted life years (DALYs) rate, and estimated annual percentage change (EAPC) by gender, age, country, and region from 1990 to 2019. Results: In 2019, deaths and DALYs have significantly increased to 21.73 thousand and 584.09 thousand. The global age-standardized death and DALYs rates have slightly increased over the past 30 years (EAPCs: 0.34 and 0.29). Among four common leukemia subtypes, only CML (Chronic Myeloid Leukemia) exhibited a significant decrease in ASDR and age-standardized DALYs rate, with EAPC of -1.74 and -1.52. AML (Acute Myeloid Leukemia) showed the most pronounced upward trend in ASDR, with an EAPC of 1.34. These trends vary by gender, age, region, and national economic status. Older people have been at a significantly greater risk. Females globally have borne a higher burden. While males have shown an increasing trend. The regions experiencing the greatest growth in ASR were South Asia. The countries with the largest increases were Equatorial Guinea. However, It is worth noting that there may be variations among specific subtypes of leukemia. Regions with high Socio-demographic Index (SDI) have had the highest ASR, while low-middle SDI regions have shown the greatest increase in these rates. All ASRs values have been positively correlated with SDI, but there has been a turning point in medium to high SDI regions. Conclusions: Leukemia attributable to high BMI risk is gradually becoming a heavier burden globally. Different subtypes of leukemia have distinct temporal and regional patterns. This study's findings will provide information for analyzing the worldwide disease burden patterns and serve as a basis for disease prevention, developing suitable strategies for the modifiable risk factor.

13.
Int J Biol Macromol ; 271(Pt 2): 132623, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845255

ABSTRACT

Shellac is a natural resin featuring some attractive properties such as amphiphilicity, pH responsiveness, biocompatibility, and biodegradability. There has been increasing interest in employing shellac for controlled delivery of food bioactive compounds. This review outlines the recent advances in different types of shellac-based delivery systems, including nanoparticles, zein-shellac particles, hydrogels, nanofibers, and nanomicelles. The preparation method, formation mechanism, structure, and delivery performance are investigated. These systems could improve the stability and shelf-life of bioactive compounds, allow for targeted release at the small intestine or colon site, and increase bioavailability. The deficiencies and challenges of each of the systems are also discussed. The promising results in this review could guide future trends in more efficient shellac-based delivery platforms for functional food applications.


Subject(s)
Resins, Plant , Humans , Resins, Plant/chemistry , Drug Delivery Systems , Zein/chemistry , Nanoparticles/chemistry , Hydrogels/chemistry , Nanofibers/chemistry , Animals , Biological Availability
14.
Acta Pharmacol Sin ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914676

ABSTRACT

Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 µg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.

15.
Environ Res ; 257: 119379, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38851374

ABSTRACT

A large number of pesticides have been widely manufactured and applied, and are released into the environment with negative impact on human health. Pesticides are largely used in densely populated urban environments, in green zones, along roads and on private properties. In order to characterize the potential exposure related health effects of pesticide and their occurrence in the urban environment, 222 pesticides were screened and quantified in 228 road dust and 156 green-belt soil samples in autumn and spring from Harbin, a megacity in China, using GC-MS/MS base quantitative trace analysis. The results showed that a total of 33 pesticides were detected in road dust and green-belt soil, with the total concentrations of 650 and 236 ng/g (dry weight = dw), respectively. The concentrations of pesticides in road dust were significantly higher than that in green-belt soil. Pesticides in the environment were influenced by the seasons, with the highest concentrations of insecticides in autumn and the highest levels of herbicides in spring. In road dust, the concentrations of highways in autumn and spring (with the mean values of 94.1 and 68.2 ng/g dw) were much lower than that of the other road classes (arterial roads, sub-arterial roads and branch ways). Whereas in the green-belt soil, there was no significant difference in the concentration of pesticides between the different road classes. A first risk assessment was conducted to evaluate the potential adverse health effects of the pesticides, the results showed that the highest hazard index (HI) for a single pesticide in dust and soil was 0.12, the hazard index for children was higher than that for adults, with an overall hazard index of less than 1. Our results indicated that pesticide levels do not have a significant health impact on people.


Subject(s)
Cities , Dust , Environmental Exposure , Environmental Monitoring , Pesticides , China , Pesticides/analysis , Humans , Environmental Exposure/analysis , Dust/analysis , Environmental Monitoring/methods , Urban Population , Seasons , Soil Pollutants/analysis , High-Throughput Screening Assays
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 794-798, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926969

ABSTRACT

OBJECTIVE: To investigate the value of serum free light chain (sFLC) and serum calcium ion in the diagnosis and prognosis of multiple myeloma (MM). METHODS: Forty patients with MM treated in Henan Provincial People's Hospital from January 2018 to January 2022 were selected as the observation group, and 40 healthy volunteers were selected as the control group. The differences of sFLC-κ、sFLC-λ、sFLC-κ/λ, serum calcium ions, etc between the two groups were compared. Meanwhile, the differences of sFLC-κ、sFLC-λ、sFLC-κ/λ, serum calcium ions, etc in different international staging systems (ISS), chemotherapy efficacy and prognosis patients were analyzed. RESULTS: The levels of sFLC-κï¼»(98.39±21.19) vs (12.01±4.45) mg/Lï¼½, sFLC-λï¼»(210.20±45.54) vs (14.10±5.11) mg/Lï¼½ and proportions of hypocalcemia (65% vs 0) in the observation group were significantly higher than those in the control group (P < 0.05), while sFLC-κ/ λ ratio[(0.44±0.10) vs (0.87±0.12)ï¼½ and serum calcium ions [(1.98±0.46) vs (2.42±0.40)mmol/Lï¼½ were significantly lower than those in the control group (P < 0.05). The sFLC-κ, sFLC-λ, the proportion of hypocalcemia and the course of hypocalcemia in ISS stage III patients in the observation group were significantly higher than those in stage I and II patients (P < 0.05), while sFLC-κ/λ ratio, and serum calcium ions were significantly lower than those in stage I and II patients (P < 0.05). The levels of sFLC-κ [(107.76±21.22) vs (94.67±20.11)mg/Lï¼½, sFLC- λ[(245.54±41.12) vs (205.54±50.22)mg/Lï¼½ of patients with hypocalcemia in the observation group was significantly higher than those without hypocalcemia (P < 0.05), while the sFLC-κ/λ ratio was significantly lower than those without hypocalcemia [(0.42±0.04) vs (0.47±0.06);P < 0.05ï¼½. The levels of sFLC-κ ï¼»(107.29±20.14) vs ( 91.11±18.92)mg/Lï¼½, sFLC-λ[(247.98±42.26) vs (179.29±39.32)mg/Lï¼½ in patients with ineffective chemotherapy were significantly higher than those in patients with effective chemotherapy (P < 0.05), while the sFLC-κ/λ ratio was significantly lower than those in patients with effective chemotherapy ï¼»(0.43±0.10) vs (0.50±0.09);P < 0.05)]. The area under the ROC curve for sFLC-κ, sFLC-λ, sFLC-κ/λ predicting ineffective chemotherapy was 0.803, 0.793 and 0.699 respectively, P < 0.05. There was no significant difference in sFLC-κ, sFLC-λ, sFLC-κ/λ ratio, serum calcium ion, hypocalcemia ratio and hypocalcemia course between survival and death patients (P >0.05). CONCLUSION: sFLC and serum calcium are related to ISS stage of MM patients. sFLC level has a certain value to predict the curative effect of chemotherapy in MM patients. However, the prognostic values of sFLC and serum calcium are not yet confirmed for MM patients.


Subject(s)
Calcium , Multiple Myeloma , Humans , Multiple Myeloma/blood , Multiple Myeloma/diagnosis , Calcium/blood , Prognosis , Immunoglobulin kappa-Chains/blood , Immunoglobulin Light Chains/blood , Hypocalcemia/blood , Case-Control Studies , Female , Immunoglobulin lambda-Chains/blood , Male , Middle Aged
17.
Chemosphere ; 362: 142565, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871187

ABSTRACT

Compared to the particle-gas partition coefficients (KPG), the rain-gas (KRG) and snow-gas (KSG) partition coefficients are also essential in studying the environmental behavior and fate of chemicals in the atmosphere. While the temperature dependence for the KPG have been extensively studied, the study for KRG and KSG are still lacking. Adsorption coefficients between water surface-air (KIA) and snow surface-air (KJA), as well as partition coefficients between water-air (KWA) and octanol-air (KOA) are vital in calculating KRG and KSG. These four basic adsorption and partition coefficients are also temperature-dependent, given by the well-known two-parameters Antoine equation logKXY = AXY + BXY/T, where KXY is the adsorption or partition coefficients, AXY and BXY are Antoine parameters (XY stand for IA, JA, WA, and OA), and T is the temperature in Kelvin. In this study, the parameters AXY and BXY are calculated for 943 chemicals, and logKXY can be estimated at any ambient temperature for these chemicals using these Antoine parameters. The results are evaluated by comparing these data with published experimental and modeled data, and the results show reasonable accuracy. Based on these coefficients, temperature-dependence of logKRG and logKSG is studied. It is found that both logKRG and logKSG are linearly related to 1/T, and Antoine parameters for logKRG and logKSG are also estimated. Distributions of the 943 chemicals in the atmospheric phases (gas, particle, and rain/snow), are illustrated in a Chemical Space Map. The findings reveal that, at environmental temperatures and precipitation days, the dominant state for the majority of chemicals is the gaseous phase. All the AXY and BXY values for logKSG, logKRG, and basic adsorption and partition coefficients, both modeled by this study and collected from published work, are systematically organized into an accessible dataset for public utilization.


Subject(s)
Rain , Snow , Temperature , Snow/chemistry , Rain/chemistry , Adsorption , Gases/chemistry , Air Pollutants/analysis , Air Pollutants/chemistry , Atmosphere/chemistry , Environmental Monitoring/methods , Water/chemistry
18.
Biomaterials ; 311: 122670, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38941685

ABSTRACT

After orthopedic surgeries, such as hip replacement, many patients are prone to developing deep vein thrombosis (DVT), which in severe cases can lead to fatal pulmonary embolism or major bleeding. Clinical intervention with high-dose anticoagulant therapy inevitably carries the risk of bleeding. Therefore, a targeted drug delivery system that adjusts local DVT lesions and potentially reduces drug dosage and toxic side effects important. In this study, we developed a targeted drug delivery platelet-derived nanoplatform (AMSNP@PM-rH/A) for DVT treatment that can simultaneously deliver a direct thrombin inhibitor (DTI) Recombinant Hirudin (rH), and the Factor Xa inhibitor Apixaban (A) by utilizing Aminated mesoporous silica nanoparticles (AMSNP). This formulation exhibits improved biocompatibility and blood half-life and can effectively eliminate deep vein thrombosis lesions and achieve therapeutic effects at half the dosage. Furthermore, we employed various visualization techniques to capture the targeted accumulation and release of a platelet membrane (PM) coating in deep vein thrombosis and explored its potential targeting mechanism.


Subject(s)
Blood Platelets , Hirudins , Pyridones , Venous Thrombosis , Venous Thrombosis/drug therapy , Blood Platelets/drug effects , Blood Platelets/metabolism , Pyridones/chemistry , Pyridones/therapeutic use , Pyridones/pharmacology , Animals , Humans , Hirudins/chemistry , Hirudins/pharmacology , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Nanoparticles/chemistry , Drug Delivery Systems , Nanotechnology/methods , Male , Silicon Dioxide/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice , Cell Membrane/metabolism , Cell Membrane/drug effects , Recombinant Proteins/therapeutic use , Factor Xa Inhibitors/therapeutic use , Factor Xa Inhibitors/chemistry , Factor Xa Inhibitors/pharmacology
19.
Mol Cancer ; 23(1): 116, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822351

ABSTRACT

BACKGROUND: Elevated evidence suggests that the SENPs family plays an important role in tumor progression. However, the role of SENPs in AML remains unclear. METHODS: We evaluated the expression pattern of SENP1 based on RNA sequencing data obtained from OHSU, TCGA, TARGET, and MILE datasets. Clinical samples were used to verify the expression of SENP1 in the AML cells. Lentiviral vectors shRNA and sgRNA were used to intervene in SENP1 expression in AML cells, and the effects of SENP1 on AML proliferation and anti-apoptosis were detected using in vitro and in vivo models. Chip-qPCR, MERIP-qPCR, CO-IP, RNA pulldown, and dual-luciferase reporter gene assays were used to explore the regulatory mechanisms of SNEP1 in AML. RESULTS: SENP1 was significantly upregulated in high-risk AML patients and closely related to poor prognosis. The AKT/mTOR signaling pathway is a key downstream pathway that mediates SENP1's regulation of AML proliferation and anti-apoptosis. Mechanistically, the CO-IP assay revealed binding between SENP1 and HDAC2. SUMO and Chip-qPCR assays suggested that SENP1 can desumoylate HDAC2, which enhances EGFR transcription and activates the AKT pathway. In addition, we found that IGF2BP3 expression was upregulated in high-risk AML patients and was positively correlated with SENP1 expression. MERIP-qPCR and RIP-qPCR showed that IGF2BP3 binds SENP1 3-UTR in an m6A manner, enhances SENP1 expression, and promotes AKT pathway conduction. CONCLUSIONS: Our findings reveal a distinct mechanism of SENP1-mediated HDAC2-AKT activation and establish the critical role of the IGF2BP3/SENP1signaling axis in AML development.


Subject(s)
Adenosine , Cell Proliferation , Cysteine Endopeptidases , Histone Deacetylase 2 , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Sumoylation , Animals , Female , Humans , Male , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Apoptosis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Disease Progression , Gene Expression Regulation, Leukemic , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Xenograft Model Antitumor Assays
20.
Front Chem ; 12: 1398984, 2024.
Article in English | MEDLINE | ID: mdl-38894728

ABSTRACT

The component analysis of raw meal is critical to the quality of cement. In recent years, near-infrared (NIR) has been emerged as an innovative and efficient analytical method to determine the oxide content of cement raw meal. This study aims to utilize NIR spectroscopy combined with machine learning and chemometrics to improve the prediction of oxide content in cement raw meal. The Savitzky-Golay convolution smoothing method is applied to eliminate noise interference for the analysis of calcium carbonate ( C a C O 3 ), silicon dioxide ( S i O 2 ), aluminum oxide ( A l 2 O 3 ), and ferric oxide ( F e 2 O 3 ) in cement raw materials. Different wavelength selection techniques are used to perform a comprehensive analysis of the model, comparing the performance of several wavelength selection techniques. The back-propagation neural network regression model based on particle swarm optimization algorithm was also applied to optimize the extracted and screened feature wavelengths, and the model prediction performance was checked and evaluated using R p and RMSE. In conclusion, the results indicate that NIR spectroscopy in combination with ML and chemometrics has great potential to effectively improve the prediction performance of oxide content in raw materials and highlight the importance of modeling and wavelength selection techniques. By enabling more accurate and efficient determination of oxide content in raw materials, NIR spectroscopy coupled with meta-modeling has the potential to revolutionize quality assurance practices in cement manufacturing.

SELECTION OF CITATIONS
SEARCH DETAIL