Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
ACS Omega ; 9(21): 22744-22753, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38826525

ABSTRACT

The biotransformation of ginsenosides using microorganisms represents a promising and ecofriendly approach for the production of rare ginsenosides. The present study reports on the biotransformation of ginsenoside Rb1 using the fungus Irpex lacteus, resulting in the production of ginsenoside Rd and seven rare ginsenosides with novel structures. Employing high-performance liquid chromatography coupled with high-resolution tandem mass spectrometry, the identities of the transformation products were rapidly determined. Two sets of isomers with molecular weights of 980.56 and 962.55 were discovered among the seven rare ginsenosides, which were generated through the isomerization of the olefin chain in the protopanaxadiol (PPD)-type ginsenoside skeleton. Each isomer exhibited characteristic fragment ions and neutral loss patterns in their tandem mass spectra, providing evidence of their unique structures. Time-course experiments demonstrated that the transformation reaction reached equilibrium after 14 days, with Rb1 initially generating Rd and compound 5, followed by the formation of other rare ginsenosides. The biotransformation process catalyzed by I. lacteus was found to involve not only the typical deglycosylation reaction at the C-20 position but also hydroxylation at the C-22 and C-23 positions, as well as hydrogenation, transfer, and cyclization of the double bond at the C-24(25) position. These enzymatic capabilities extend to the structural modification of other PPD-type ginsenosides such as Rc and Rd, revealing the potential of I. lacteus for the production of a wider range of rare ginsenosides. The transformation activities observed in I. lacteus are unprecedented among fungal biotransformations of ginsenosides. This study highlights the application of a medicinal fungi-based biotransformation strategy for the generation of rare ginsenosides with enhanced structural diversity, thereby expanding the variety of bioactive compounds derived from ginseng.

2.
Biomed Chromatogr ; 38(8): e5929, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38881323

ABSTRACT

The Runchang-Tongbian (RCTB) formula is a traditional Chinese medicine (TCM) formula consisting of four herbs, namely Cannabis Fructus (Huomaren), Rehmanniae Radix (Dihuang), Atractylodis Macrocephalae Rhizoma (Baizhu), and Aurantii Fructus (Zhiqiao). It is widely used clinically because of its beneficial effect on constipation. However, its strong bitter taste leads to poor patient compliance. The bitter components of TCM compounds are complex and numerous, and inhibiting the bitter taste of TCM has become a major clinical challenge. Here, we use ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) and high-resolution mass spectrometry to identify 59 chemical components in the TCM compound RCTB formula. Next, four bitter taste receptors, TAS2R39, TAS2R14, TAS2R7, and TAS2R5, which are tightly bound to the compounds in RCTB, were screened as molecular docking receptors using the BitterX database. The top-three-scoring receptor-small-molecule complexes for each of the four receptors were selected for molecular dynamics simulation. Finally, seven bitter components were identified, namely six flavonoids (rhoifolin, naringin, poncirin, diosmin, didymin, and narirutin) and one phenylpropanoid (purpureaside C). Thus, we proposed a new method for identifying the bitter components in TCM compounds, which provides a theoretical reference for bitter taste inhibition in TCM compounds.


Subject(s)
Drugs, Chinese Herbal , Mass Spectrometry , Molecular Docking Simulation , Molecular Dynamics Simulation , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Mass Spectrometry/methods , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Humans , Taste , Liquid Chromatography-Mass Spectrometry
3.
ACS Omega ; 8(45): 43285-43294, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024707

ABSTRACT

Rare ginsenosides with major pharmacological effects are barely present in natural ginseng and are required to be obtained by transformation. In the current study, ginsenoside Rb1 was chemically transformed with the involvement of ethanol molecules to prepare rare ginsenosides using the synthesized heterogeneous catalyst 12-HPW@MeSi. A total of 16 transformation products were obtained and identified using high-performance liquid chromatography coupled with multistage tandem mass spectrometry and high-resolution mass spectrometry. Ethanol molecules were involved in the production of 6 transformation products by adding to the C-20(21), C-20(22), or C-24(25) double bonds on the aglycone to produce ethoxyl groups at the C-25 and C-20 positions. Transformation pathways of ginsenoside Rb1 are summarized, which involve deglycosylation, elimination, cycloaddition, epimerization, and addition reactions. In addition, 12-HPW@MeSi was recyclable through a simple centrifugation, maintaining an 85.1% conversion rate of Rb1 after 3 cycles. This work opens up an efficient and recycled process for the preparation of rare ginsenosides with the involvement of organic molecules.

4.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570602

ABSTRACT

Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. have different clinical efficacies, with the former typically used to treat typhoid fever and the latter mainly used to clear liver heat. The differences in their clinical efficacy are closely related to their complex chemical composition, especially the active components. In this study, the saponins and volatile oils in two varieties of Radix Bupleuri grown in different regions were extracted and analyzed using high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (MS), and the absolute contents of five saikosaponins were accurately quantified using an established HPLC-MS method in the multiple reaction monitoring mode. Multivariate statistical analysis was performed to reveal the difference in the active components between the two varieties. The saikosaponin content was significantly affected by variety and growing region, with all five saikosaponins being significantly higher in Bupleurum chinense DC. than in Bupleurum scorzonerifolium Willd. The results of principal component analysis and hierarchical cluster analysis show a clear distinction between the two varieties in terms of both saponins and volatile oils. Twenty-one saponins, including saikosaponin b2 and b1, and fifty-two volatile oils, including 2-tetradecyloxirane and chloromethyl cyanide, were screened and identified as differential compounds contributing to the significant difference between the two varieties. These compounds may also be responsible for the difference in clinical efficacy between Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. All the results suggest that the accumulation and diversity of active components in Radix Bupleuri are significantly affected by the variety. In contrast to previous reports, this study provides the absolute contents of five saikosaponins in Radix Bupleuri of different varieties and reduces the influence of the growing region on the analytical results by collecting samples from different regions. The results of this study may provide a reference for the identification and quality evaluation of different varieties of Radix Bupleuri.


Subject(s)
Bupleurum , Oils, Volatile , Oleanolic Acid , Saponins , Bupleurum/chemistry , Chromatography, High Pressure Liquid/methods , Gas Chromatography-Mass Spectrometry , Mass Spectrometry , Saponins/analysis , Oleanolic Acid/analysis , Oils, Volatile/analysis , Plant Roots/chemistry
5.
Molecules ; 27(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35956782

ABSTRACT

The quality of Radix Bupleuri is greatly affected by its growing environment. In this study, Radix Bupleuri samples that were harvested from seven different regions across northwest China were examined by high-performance liquid chromatography (HPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) to reveal significant differences in quality contributed by the cultivation region. An HPLC-MS method was firstly established and used in the multiple reaction monitoring mode for the quantitative analysis of five saikosaponins in Radix Bupleuri so as to evaluate the difference in the absolute content of saikosaponins attributable to the cultivation region. The effect on the components of Radix Bupleuri was further investigated based on the profiles of the representative saponins and volatile compounds, which were extracted from the Radix Bupleuri samples and analyzed by HPLC-MS and GC-MS. Multivariate statistical analysis was employed to differentiate the Radix Bupleuri samples cultivated in different regions and to discover the differential compositions. The developed quantitative method was validated to be accurate, stable, sensitive, and repeatable for the determination of five saikosaponins. Further statistical tests revealed that the collected Radix Bupleuri samples were distinctly different from each other in terms of both saponins and volatile compounds, based on the provinces where they were grown. In addition, twenty-eight saponins and fifty-eight volatile compounds were identified as the differentially accumulated compositions that contributed to the discrimination of the Radix Bupleuri samples. The Radix Bupleuri samples grown in Shouyang county showed the highest content of saikosaponins. All of the results indicated that the cultivation region significantly affected the accumulation and diversity of the main chemical components of Radix Bupleuri. The findings of this research provide insights into the effect of the cultivation region on the quality of Radix Bupleuri and the differentiation of Radix Bupleuri cultivated in different regions based on the use of HPLC-MS and GC-MS combined with multivariate statistical analysis.


Subject(s)
Bupleurum , Drugs, Chinese Herbal , Saponins , Bupleurum/chemistry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Gas Chromatography-Mass Spectrometry , Mass Spectrometry , Saponins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL