Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
Front Physiol ; 15: 1451464, 2024.
Article in English | MEDLINE | ID: mdl-39308979

ABSTRACT

This study compared the effects of High-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on blood lactate clearance. 21 adult males were equally and randomly assigned to the HIIT and MICT groups, and completed 8 weeks of training. Before the training intervention, after 4 weeks and 8 weeks of training, all subjects were tested for blood lactate levels between 0 and 55 min after the same high-intensity test. The results show that after 8 weeks, blood lactate levels were significantly lower than pre-tests in both the HIIT and MICT groups at "0-55 min" after high-intensity test (p < 0.05), and the blood lactate clearance percentage at15-min and 30-min in both groups were significantly higher than the pre-tests (P < 0.01). The blood lactate levels in the HIIT group were significantly lower than those in the MICT group at 15 min and 30 min after test (P < 0.05), and the blood lactate clearance percentage at 30 min in the HIIT group was significantly higher than those in the MICT group (P < 0.05). In conclusion, both HIIT and MICT enhance blood lactate clearance in adult males post high-intensity test, with HIIT demonstrating superior effectiveness, making it a viable alternative to MICT.

2.
Cir Cir ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312461

ABSTRACT

Objective: The study aimed to explore the clinical efficacy of radiofrequency ablation (RFA) guided by high-density mapping on persistent atrial fibrillation (PsAF). Method: A total of 190 patients with PsAF undergoing RFA were divided into a routine group (n = 105) and a high-density mapping group (n = 85). The indicators of therapeutic efficacy were collected and compared. Results: A statistically significant difference was found in the overall rate of post-operative recurrence between the two groups (11.58% vs. 23.81%, χ2 = 5.055, p = 0.025). The effects of different treatment methods on SF-36 score varied (FSF-36 treatment = 43.142, p < 0.05), and SF-36 scores at 3, 6, and 12 months of both groups were in the same order: the high-density mapping group > the routine group. While surgery guided by high-density substrate mapping (odds ratio = 0.453, 95% confidence interval: [0.232-0.784], p < 0.001) was a protective factor for recurrence. Conclusion: For patients with PsAF, more accurate mapping is conducted on the atrial substrate using a PentaRay electrode, which further verifies that the success rate of individualized ablation strategy is like mainstream procedures, and it significantly improves the subsequent health status of patients and reduces their incidence of adverse reactions.


Objetivo: Explorar la eficacia clínica de la ablación por radiofrecuencia guiada por mapeo de alta densidad en el tratamiento de la fibrilación auricular persistente. Método: Ciento noventa pacientes con fibrilación auricular persistente que recibieron ablación por radiofrecuencia se dividieron en dos grupos: convencional (n = 105) y mapeo de alta densidad (n = 85). Se recopilaron y compararon los indicadores de eficacia. Resultados: La diferencia en la tasa total de recurrencia posoperatoria entre los dos grupos fue estadísticamente significativa (11,58% vs. 23,81%; χ2 = 5055; p = 0.025). Los efectos de los diferentes métodos de tratamiento en el puntaje SF-36 variaron (FSF-36 tratamiento = 43.142, p < 0.05), y los puntajes SF-36 a los 3, 6 y 12 meses de ambos grupos siguieron el mismo orden: grupo de mapeo de alta densidad > grupo convencional. Por su parte, la cirugía guiada por mapeo de matriz de alta densidad (OR: 0.453; IC95%: 0.232-0.784; p < 0.001) es un factor protector contra la recurrencia. Conclusión: Para los pacientes con fibrilación auricular persistente, el uso de electrodos Pentaray para mapear con mayor precisión en la matriz auricular verificó aún más que la tasa de éxito de la estrategia de ablación individualizada es similar a la de la cirugía convencional, mejorando significativamente el estado de salud posterior del paciente y reduciendo la incidencia de reacciones adversas.

3.
J Hazard Mater ; 480: 135823, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39278034

ABSTRACT

Novel psychoactive substances (NPS), such as Esketamine (Esket), often contaminate the aquatic ecosystems following human consumption, raising concerns about the residues and potential ecological hazards to non-target organisms. The study used zebrafish as a model organism to investigate the developmental toxicity and ecotoxicological effects of acute Esket exposure. Our findings demonstrate that exposure to Esket significantly affected the early development and angiogenesis of zebrafish embryos/larvae. The mandible length was significantly decreased, and the angles between the pharyngeal arch cartilages were narrowed compared to the control group (all P < 0.05). Additionally, Esket resulted in a decrease of 47.6-89.8 % in the number of neural crest cells (NCC). Transcriptome analysis indicated altered expression of genes associated with cartilage and osteoblast growth. Moreover, Esket significantly inhibited swimming ability in zebrafish larvae and was accompanied by behavioral abnormalities and molecular alterations in the brain. Potential mechanisms underlying Esket-induced behavioral disorders involve neurotransmitter system impairment, abnormal cartilage development and function, aberrant vascular development, as well as perturbations in oxidative stress and apoptosis signaling pathways. Notably, the dysregulation of skeleton development through the bone morphogenetic protein (BMP) signaling pathway is identified as the primary mechanistic behind Esket-induced behavioral disorder. This study enhances our understanding of Esket's ecotoxicology profile and provides a comprehensive assessment of the environmental risks associated with NPS.

4.
Front Endocrinol (Lausanne) ; 15: 1440436, 2024.
Article in English | MEDLINE | ID: mdl-39229380

ABSTRACT

Background: Spontaneous preterm birth (sPTB) is a global disease that is a leading cause of death in neonates and children younger than 5 years of age. However, the etiology of sPTB remains poorly understood. Recent evidence has shown a strong association between metabolic disorders and sPTB. To determine the metabolic alterations in sPTB patients, we used various bioinformatics methods to analyze the abnormal changes in metabolic pathways in the preterm placenta via existing datasets. Methods: In this study, we integrated two datasets (GSE203507 and GSE174415) from the NCBI GEO database for the following analysis. We utilized the "Deseq2" R package and WGCNA for differentially expressed genes (DEGs) analysis; the identified DEGs were subsequently compared with metabolism-related genes. To identify the altered metabolism-related pathways and hub genes in sPTB patients, we performed multiple functional enrichment analysis and applied three machine learning algorithms, LASSO, SVM-RFE, and RF, with the hub genes that were verified by immunohistochemistry. Additionally, we conducted single-sample gene set enrichment analysis to assess immune infiltration in the placenta. Results: We identified 228 sPTB-related DEGs that were enriched in pathways such as arachidonic acid and glutathione metabolism. A total of 3 metabolism-related hub genes, namely, ANPEP, CKMT1B, and PLA2G4A, were identified and validated in external datasets and experiments. A nomogram model was developed and evaluated with 3 hub genes; the model could reliably distinguish sPTB patients and term labor patients with an area under the curve (AUC) > 0.75 for both the training and validation sets. Immune infiltration analysis revealed immune dysregulation in sPTB patients. Conclusion: Three potential hub genes that influence the occurrence of sPTB through shadow participation in placental metabolism were identified; these results provide a new perspective for the development and targeting of treatments for sPTB.


Subject(s)
Computational Biology , Machine Learning , Placenta , Premature Birth , Humans , Premature Birth/genetics , Premature Birth/metabolism , Female , Computational Biology/methods , Pregnancy , Placenta/metabolism , Gene Expression Profiling , Infant, Newborn , Metabolic Networks and Pathways/genetics , Gene Regulatory Networks , Databases, Genetic
5.
Int J Biol Macromol ; 279(Pt 1): 135160, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39214221

ABSTRACT

The crosstalk between endoplasmic reticulum and mitochondria is of significance in apoptosis, in which cytochrome b5 (Cyt b5) is thought to be a major target for cytochrome c (Cyt c) upon its release from the mitochondria. In the absence of Cyt b5, the role of interactions of Cyt c with CYP-dependent monooxygenase system in apoptotic regulation was explored in this study. NADPH-dependent and Cyt c-induced formation of reactive oxygen species (ROS) and NADPH-independent Cyt c unfolding were revealed. With the aid of a CPR inhibitor and CYP antibodies, the interactions among Cyt c, cytochrome P450 reductase (CPR) and cytochrome P450 (CYP) are evidenced, which are found crucial for monooxygenase-derived ROS formation. The underlying structural basis of Cyt c-CYP complex was unveiled by molecular dynamics simulations. This study provides novel insights into how Cyt c regulates ROS formation through the interactions with CPR and CYP, and is implicated for a deeper understanding of the regulation mechanism in the mitochondria-endoplasmic reticulum apoptotic pathway.


Subject(s)
Apoptosis , Cytochromes c , Endoplasmic Reticulum , Mitochondria , NADPH-Ferrihemoprotein Reductase , Reactive Oxygen Species , Cytochromes c/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Reactive Oxygen Species/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Humans , Protein Binding , Molecular Dynamics Simulation , Animals , NADP/metabolism
6.
Sci Total Environ ; 950: 175131, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39127212

ABSTRACT

TPhP and IPPP, alternatives to PBDEs as flame retardants, have been studied for their developmental toxicity, but their visual toxicities are less understood. In this study, zebrafish larvae were exploited to evaluate the potential ocular impairments following exposure to BDE-47, TPhP, and IPPP. The results revealed a range of ocular abnormalities, including malformation, vascular issues within the eyes, and histopathological changes in the retina. Notably, the visually mediated behavioral changes were primarily observed in IPPP and TPhP, indicating that they caused more severe eye malformations and vision impairment than BDE-47. Molecular docking and MD simulations showed stronger binding affinity of TPhP and IPPP to RAR and RBP receptors. Elevated ROS and T3 levels induced by these compounds led to apoptosis in larvae eyes, and increased GABA levels induced by TPhP and IPPP hindered retinal repair. In summary, our results indicate TPhP and IPPP exhibit severer visual toxicity than BDE-47, affecting eye development and visually guided behaviors. The underlying mechanism involves disruptions in RA signaling, retinal neurotransmitters imbalance, thyroid hormones up-regulation, and apoptosis in larvae eyes. This work highlights novel insights into the need for cautious use of these flame retardants due to their potential biological hazards, thereby offering valuable guidance for their safer applications.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Larva , Organophosphates , Zebrafish , Animals , Halogenated Diphenyl Ethers/toxicity , Larva/drug effects , Flame Retardants/toxicity , Organophosphates/toxicity , Water Pollutants, Chemical/toxicity , Molecular Docking Simulation
7.
J Transl Med ; 22(1): 674, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039496

ABSTRACT

BACKGROUND: Preeclampsia, especially early-onset preeclampsia (EO-PE), is a pregnancy complication that has serious consequences for the health of both the mother and the fetus. Although abnormal placentation due to mitochondrial dysfunction is speculated to contribute to the development of EO-PE, the underlying mechanisms have yet to be fully elucidated. METHODS: The expression and localization of Siglec-6 in the placenta from normal pregnancies, preterm birth and EO-PE patients were examined by RT-qPCR, Western blot and IHC. Transwell assays were performed to evaluate the effect of Siglec-6 on trophoblast cell migration and invasion. Seahorse experiments were conducted to assess the impact of disrupting Siglec-6 expression on mitochondrial function. Co-IP assay was used to examine the interaction of Siglec-6 with SHP1/SHP2. RNA-seq was employed to investigate the mechanism by which Siglec-6 inhibits mitochondrial function in trophoblast cells. RESULTS: The expression of Siglec-6 in extravillous trophoblasts is increased in placental tissues from EO-PE patients. Siglec-6 inhibits trophoblast cell migration and invasion and impairs mitochondrial function. Mechanismly, Siglec-6 inhibits the activation of NF-κB by recruiting SHP1/SHP2, leading to increased expression of GPR20. Notably, the importance of GPR20 function downstream of Siglec-6 in trophoblasts is supported by the observation that GPR20 downregulation rescues defects caused by Siglec-6 overexpression. Finally, overexpression of Siglec-6 in the placenta induces a preeclampsia-like phenotype in a pregnant mouse model. CONCLUSIONS: This study indicates that the regulatory pathway Siglec-6/GPR20 has a crucial role in regulating trophoblast mitochondrial function, and we suggest that Siglec-6 and GPR20 could serve as potential markers and targets for the clinical diagnosis and therapy of EO-PE.


Subject(s)
Cell Movement , Mitochondria , Pre-Eclampsia , Receptors, G-Protein-Coupled , Trophoblasts , Up-Regulation , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Humans , Pregnancy , Female , Mitochondria/metabolism , Up-Regulation/genetics , Trophoblasts/metabolism , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Cell Movement/genetics , Lectins/metabolism , Placenta/metabolism , Mice , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Adult
8.
Transl Oncol ; 47: 102047, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38972174

ABSTRACT

Osteosarcoma, one of the most common primary malignancies in children and adolescents, has the primary characteristics of a poor prognosis and high rate of metastasis. This study used super-enhancer-related genes derived from two different cell lines to construct five novel super-enhancer-related gene prognostic models for patients with osteosarcoma. The training and testing datasets were used to confirm the prognostic models of the five super-enhancer-related genes, which resulted in an impartial predictive element for osteosarcoma. The immunotherapy and prediction of the response to anticancer drugs have shown that the risk signature of the five super-enhancer-related genes positively correlate with chemosensitivity. Furthermore, functional analysis of the risk signature genes revealed a significant relationship between gene groups and the malignant characteristics of tumours. TNF Receptor Superfamily Member 11b (TNFRSF11B) was selected for functional verification. Silencing of TNFRSF11B suppressed the proliferation, migration, and invasion of osteosarcoma cells in vitro and suppressed osteosarcoma growth in vivo. Moreover, transcriptome sequencing was performed on MG-63 cells to study the regulatory mechanism of TNFRSF11B in osteosarcoma cells, and it was discovered that TNFRSF11B is involved in the development of osteosarcoma via the phosphoinositide 3-kinase signalling pathway. Following the identification of TNFRSF11B as a key gene, we selected an inhibitor that specifically targeted this gene and performed molecular docking simulations. In addition, risedronic acid inhibited osteosarcoma growth at both cellular and molecular levels. In conclusion, the super-enhancer-related gene signature is a viable therapeutic tool for osteosarcoma prognosis and treatment.

9.
CNS Neurosci Ther ; 30(7): e14751, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39015946

ABSTRACT

AIMS: To predict the vagus nerve stimulation (VNS) efficacy for pediatric drug-resistant epilepsy (DRE) patients, we aim to identify preimplantation biomarkers through clinical features and electroencephalogram (EEG) signals and thus establish a predictive model from a multi-modal feature set with high prediction accuracy. METHODS: Sixty-five pediatric DRE patients implanted with VNS were included and followed up. We explored the topological network and entropy features of preimplantation EEG signals to identify the biomarkers for VNS efficacy. A Support Vector Machine (SVM) integrated these biomarkers to distinguish the efficacy groups. RESULTS: The proportion of VNS responders was 58.5% (38/65) at the last follow-up. In the analysis of parieto-occipital α band activity, higher synchronization level and nodal efficiency were found in responders. The central-frontal θ band activity showed significantly lower entropy in responders. The prediction model reached an accuracy of 81.5%, a precision of 80.1%, and an AUC (area under the receiver operating characteristic curve) of 0.838. CONCLUSION: Our results revealed that, compared to nonresponders, VNS responders had a more efficient α band brain network, especially in the parieto-occipital region, and less spectral complexity of θ brain activities in the central-frontal region. We established a predictive model integrating both preimplantation clinical and EEG features and exhibited great potential for discriminating the VNS responders. This study contributed to the understanding of the VNS mechanism and improved the performance of the current predictive model.


Subject(s)
Connectome , Drug Resistant Epilepsy , Electroencephalography , Entropy , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/methods , Female , Drug Resistant Epilepsy/therapy , Drug Resistant Epilepsy/physiopathology , Male , Child , Electroencephalography/methods , Child, Preschool , Connectome/methods , Treatment Outcome , Adolescent , Support Vector Machine , Biomarkers , Follow-Up Studies
10.
Adv Sci (Weinh) ; 11(30): e2309542, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38872263

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive and lethal subtype of gliomas of the central nervous system. The efficacy of sonodynamic therapy (SDT) against GBM is significantly reduced by the expression of apoptosis-inhibitory proteins in GBM cells. In this study, an intelligent nanoplatform (denoted as Aza-BD@PC NPs) based on the aza-boron-dipyrromethene dye and phenyl chlorothionocarbonate-modified DSPE-PEG molecules is developed for synergistic ferroptosis-enabled gas therapy (GT) and SDT of GBM. Once internalized by GBM cells, Aza-BD@PC NPs showed effective cysteine (Cys) consumption and Cys-triggered hydrogen sulfide (H2S) release for ferroptosis-enabled GT, thereby disrupting homeostasis in the intracellular environment, affecting GBM cell metabolism, and inhibiting GBM cell proliferation. Additionally, the released Aza-BD generated abundant singlet oxygen (1O2) under ultrasound irradiation for favorable SDT. In vivo and in vitro evaluations demonstrated that the combined functions of Cys consumption, H2S production, and 1O2 production induced significant death of GBM cells and markedly inhibited tumor growth, with an impressive inhibition rate of up to 97.5%. Collectively, this study constructed a cascade nanoreactor with satisfactory Cys depletion performance, excellent H2S release capability, and prominent reactive oxygen species production ability under ultrasound irradiation for the synergistic ferroptosis-enabled GT and SDT of gliomas.


Subject(s)
Ferroptosis , Glioblastoma , Hydrogen Sulfide , Prodrugs , Ferroptosis/drug effects , Animals , Mice , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Prodrugs/pharmacology , Glioblastoma/therapy , Glioblastoma/metabolism , Glioblastoma/drug therapy , Humans , Cell Line, Tumor , Ultrasonic Therapy/methods , Disease Models, Animal
11.
Small Methods ; : e2400454, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818744

ABSTRACT

In microbiological research, traditional methods for bacterial screening and antibiotic susceptibility testing are resource-intensive. Microfluidics offers an efficient alternative with rapid results and minimal sample consumption, but the demand for cost-effective, user-friendly platforms persists in communities and hospitals. Inspired by the Magdeburg hemispheres, the strategy adapts to local conditions, leveraging omnipresent atmospheric pressure for self-sealing of Rotation-SlipChip (RSC) equipped with a 3D circular Christmas tree-like microfluidic concentration gradient generator. This innovative approach provides an accessible and adaptable platform for microbiological research and testing in diverse settings. The RSC can avoid leakage concerns during multiple concentration gradient generation, chip-rotating, and final long-term incubation reaction (≥24 h). Furtherly, RSC subtypes adapted to different reactions can be fabricated in less than 15 min with cost less than $1, the result can be read through designated observational windows by naked-eye. Moreover, the RSC demonstrates its capability for evaluating bacterial biomarker activity, enabling the rapid assessment of ß-galactosidase concentration and enzyme activity within 30 min, and the limit of detection can be reduced by 10-fold. It also rapidly determines the minimum antibiotic inhibitory concentration and antibiotic combined medications results within 4 h. Overall, these low-cost and user-friendly RSC make them invaluable tools in determinations at previously impractical environment.

12.
ACS Infect Dis ; 10(6): 2212-2221, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38743643

ABSTRACT

Previous studies have shown that bicyclic azetidines are potent and selective inhibitors of apicomplexan phenylalanine tRNA synthetase (PheRS), leading to parasite growth inhibition in vitro and in vivo, including in models of Toxoplasma infection. Despite these useful properties, additional optimization is required for the development of efficacious treatments of toxoplasmosis from this inhibitor series, in particular, to achieve optimal exposure in the brain. Here, we describe a series of PheRS inhibitors built on a new bicyclic pyrrolidine core scaffold designed to retain the exit-vector geometry of the isomeric bicyclic azetidine core scaffold while offering avenues to sample diverse chemical space. Relative to the parent series, bicyclic pyrrolidines retain reasonable potency and target selectivity for parasite PheRS vs host. Further structure-activity relationship studies revealed that the introduction of aliphatic groups improved potency and ADME and PK properties, including brain exposure. The identification of this new scaffold provides potential opportunities to extend the analogue series to further improve selectivity and potency and ultimately deliver a novel, efficacious treatment of toxoplasmosis.


Subject(s)
Brain , Phenylalanine-tRNA Ligase , Pyrrolidines , Toxoplasma , Toxoplasma/drug effects , Toxoplasma/enzymology , Pyrrolidines/pharmacology , Pyrrolidines/chemistry , Animals , Brain/parasitology , Structure-Activity Relationship , Phenylalanine-tRNA Ligase/antagonists & inhibitors , Phenylalanine-tRNA Ligase/chemistry , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Mice , Toxoplasmosis/drug therapy , Humans , Azetidines/pharmacology , Azetidines/chemistry
13.
Cancer Biol Ther ; 25(1): 2338955, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38680092

ABSTRACT

Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.


•TRPM channels are widely expressed in the human body and play an important role in gliomas.• Abnormal expression of TRPM2, 3, 7, and 8 channels in gliomas is associated with disease severity and prognosis.•TRPM2, 3, 7, and 8 channels are effective targets in glioma.


Subject(s)
Brain Neoplasms , Glioma , TRPM Cation Channels , Humans , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Glioma/drug therapy , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Signal Transduction , Animals
14.
RSC Adv ; 14(16): 10953-10961, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577433

ABSTRACT

Purine nucleoside ester is one of the derivatives of purine nucleoside, which has antiviral and anticancer activities. In this work, a continuous flow synthesis of purine nucleoside esters catalyzed by lipase TL IM from Thermomyces lanuginosus was successfully achieved. Various parameters including solvent, reaction temperature, reaction time/flow rate and substrate ratio were investigated. The best yields were obtained with a continuous flow microreactor for 35 min at 50 °C with the substrate ratio of 1 : 5 (nucleosides to vinyl esters) in the solvent of tert-amyl alcohol. 12 products were efficiently synthesized with yields of 78-93%. Here we reported for the first time the use of lipase TL IM from Thermomyces lanuginosus in the synthesis of purine nucleoside esters. The significant advantages of this methodology are a green solvent and mild conditions, a simple work-up procedure and the highly reusable biocatalyst. This research provides a new technique for rapid synthesis of anticancer and antiviral nucleoside drugs and is helpful for further screening of drug activity.

15.
Phys Rev Lett ; 132(12): 123601, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38579231

ABSTRACT

The precise measurement of the gravity of Earth plays a pivotal role in various fundamental research and application fields. Although a few gravimeters have been reported to achieve this goal, miniaturization of high-precision gravimetry remains a challenge. In this work, we have proposed and demonstrated a miniaturized gravimetry operating at room temperature based on a diamagnetic levitated micro-oscillator with a proof mass of only 215 mg. Compared with the latest reported miniaturized gravimeters based on microelectromechanical systems, the performance of our gravimetry has substantial improvements in that an acceleration sensitivity of 15 µGal/sqrt[Hz] and a drift as low as 61 µGal per day have been reached. Based on this diamagnetic levitation gravimetry, we observed Earth tides, and the correlation coefficient between the experimental data and theoretical data reached 0.97. Some moderate foreseeable improvements can develop this diamagnetic levitation gravimetry into a chip size device, making it suitable for mobile platforms such as drones. Our advancement in gravimetry is expected to facilitate a multitude of applications, including underground density surveying and the forecasting of natural hazards.

16.
Nat Chem ; 16(7): 1101-1112, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38499848

ABSTRACT

Phase separation inside mammalian cells regulates the formation of the biomolecular condensates that are related to gene expression, signalling, development and disease. However, a large population of endogenous condensates and their candidate phase-separating proteins have yet to be discovered in a quantitative and high-throughput manner. Here we demonstrate that endogenously expressed biomolecular condensates can be identified across a cell's proteome by sorting proteins across varying oligomeric states. We employ volumetric compression to modulate the concentrations of intracellular proteins and the degree of crowdedness, which are physical regulators of cellular biomolecular condensates. The changes in degree of the partition of proteins into condensates or phase separation led to varying oligomeric states of the proteins, which can be detected by coupling density gradient ultracentrifugation and quantitative mass spectrometry. In total, we identified 1,518 endogenous condensate proteins, of which 538 have not been reported before. Furthermore, we demonstrate that our strategy can identify condensate proteins that respond to specific biological processes.


Subject(s)
Biomolecular Condensates , Proteome , Proteome/metabolism , Proteome/chemistry , Humans , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , High-Throughput Screening Assays , Mass Spectrometry , HeLa Cells , Proteomics/methods
17.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464220

ABSTRACT

Previous studies have shown that bicyclic azetidines are potent and selective inhibitors of apicomplexan phenylalanine tRNA synthetase (PheRS), leading to parasite growth inhibition in vitro and in vivo, including in models of Toxoplasma infection. Despite these useful properties, additional optimization is required for the development of efficacious treatments of toxoplasmosis from this inhibitor series, in particular to achieve sufficient exposure in the brain. Here, we describe a series of PheRS inhibitors built on a new bicyclic pyrrolidine core scaffold designed to retain the exit-vector geometry of the isomeric bicyclic azetidine core scaffold while offering avenues to sample diverse chemical space. Relative to the parent series, bicyclic pyrrolidines retain reasonable potency and target selectivity for parasite PheRS vs. host. Further structure-activity relationship studies revealed that the introduction of aliphatic groups improved potency, ADME and PK properties, including brain exposure. The identification of this new scaffold provides potential opportunities to extend the analog series to further improve selectivity and potency and ultimately deliver a novel, efficacious treatment of toxoplasmosis.

18.
Neuro Oncol ; 26(8): 1438-1452, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38554116

ABSTRACT

BACKGROUND: The mesenchymal (MES) subtype of glioblastoma (GBM) is believed to be influenced by both cancer cell-intrinsic alterations and extrinsic cellular interactions, yet the underlying mechanisms remain unexplored. METHODS: Identification of microglial heterogeneity by bioinformatics analysis. Transwell migration, invasion assays, and tumor models were used to determine gene function and the role of small molecule inhibitors. RNA sequencing, chromatin immunoprecipitation, and dual-luciferase reporter assays were performed to explore the underlying regulatory mechanisms. RESULTS: We identified the inflammatory microglial subtype of tumor-associated microglia (TAM) and found that its specific gene integrin beta 2 (ITGB2) was highly expressed in TAM of MES GBM tissues. Mechanistically, the activation of ITGB2 in microglia promoted the interaction between the SH2 domain of STAT3 and the cytoplasmic domain of ITGB2, thereby stimulating the JAK1/STAT3/IL-6 signaling feedback to promote the MES transition of GBM cells. Additionally, microglia communicated with GBM cells through the interaction between the receptor ITGB2 on microglia and the ligand ICAM-1 on GBM cells, while an increased secretion of ICAM-1 was induced by the proinflammatory cytokine leukemia inhibitory factor (LIF). Further studies demonstrated that inhibition of cyclin-dependent kinase 7 substantially reduced the recruitment of SNW1 to the super-enhancer of LIF, resulting in transcriptional inhibition of LIF. We identified notoginsenoside R1 as a novel LIF inhibitor that exhibited synergistic effects in combination with temozolomide. CONCLUSIONS: Our research reveals that the epigenetic-mediated interaction of GBM cells with TAM drives the MES transition of GBM and provides a novel therapeutic avenue for patients with MES GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Leukemia Inhibitory Factor , Microglia , Signal Transduction , Animals , Humans , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Leukemia Inhibitory Factor/metabolism , Microglia/metabolism , Microglia/pathology , STAT3 Transcription Factor/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Integrin beta Chains/genetics , Integrin beta Chains/metabolism
20.
Dev Med Child Neurol ; 66(9): 1215-1225, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38343043

ABSTRACT

AIM: To investigate the developmental effects of epilepsy surgery in young children. METHOD: This study retrospectively reviewed 315 consecutive children under 3 years of age, and ultimately included 89 children (48 males, 41 females) with pre- and postsurgery developmental evaluations. RESULTS: The mean general quotient before surgery was 46.7 (SD 24.7). Before surgery, the general quotient decreased in 77.6% of patients, while after surgery it increased in 55.1%. Furthermore, 70% of those 20 patients whose presurgical general quotient decreased by more than 10 points experienced positive changes. General quotient scores decreased in 15 out of the 22 patients classified in the normal/marginal presurgical category. Children who underwent surgery before the age of 12 months had a median gain in general quotient score by 7.6. Short-term general quotient scores were highly correlated with long-term scores (r = 0.909, p < 0.001). INTERPRETATION: Surgical intervention was more inclined to positively impact developmental trajectories within a short postsurgical period, particularly among those affected by severe epileptic activity. However, in children with relatively typical development, certain developmental setbacks may arise. Postsurgical short-term developmental outcomes could predict longer-term outcomes.


Subject(s)
Child Development , Epilepsy , Humans , Female , Male , Child, Preschool , Retrospective Studies , Infant , Epilepsy/surgery , Child Development/physiology , Treatment Outcome , Neurosurgical Procedures , Developmental Disabilities/etiology
SELECTION OF CITATIONS
SEARCH DETAIL