Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Environ Pollut ; 358: 124490, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960114

ABSTRACT

Pyraclostrobin, a typical representative of strobilurin fungicides, is extensively used in agriculture to control fungi and is often detected in water bodies and food. However, the comprehensive toxicological molecular mechanism of pyraclostrobin requires further study. To assess the toxic effects and underlying mechanisms of pyraclostrobin on aquatic organisms, zebrafish embryos were exposed to pyraclostrobin (20, 40, and 60 µg/L) until 96 h post fertilization (hpf). These results indicated that exposure to pyraclostrobin induces morphological alterations, including spinal curvature, shortened body length, and smaller eyes. Furthermore, heart developmental malformations, such as pericardial edema and bradycardia, were observed. This indicated severe cardiotoxicity induced by pyraclostrobin in zebrafish embryos, which was confirmed by the dysregulation of genes related to heart development. Besides, our findings also demonstrated that pyraclostrobin enhanced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), up-regulated catalase (CAT) activity, but inhibited superoxide dismutase (SOD) activity. Subsequently, the NF-κb signaling pathway was further studied, and the results indicated that the up-regulation of tnf-α, tlr-4, and myd88 activated the NF-κb signaling pathway and up-regulated the relative expression level of pro-inflammatory cytokines, such as cc-chemokine, ifn-γ, and cxcl-clc. Collectively, this study revealed that pyraclostrobin exposure induces developmental toxicity and cardiotoxicity, which may result from a combination of oxidative stress and inflammatory responses. These findings provide a basis for continued evaluation of the effects and ecological risks of pyraclostrobin on the early development of aquatic organisms.

2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(5): 599-603, 2023 Oct 01.
Article in English, Chinese | MEDLINE | ID: mdl-37805685

ABSTRACT

Stevens-Johnson syndrome (SJS), also known as the multifactorial erythematous drug eruption, is a class of adverse reactions of the skin and mucous membranes primarily caused by drug allergy often involving the oral cavity, eyes, and external genital mucosa, generally accompanied by fever, and can be life-threatening in severe cases. In February 2022, the Department of Stomatology, the First Affiliated Hospital of Zhengzhou University admitted a patient with huge inflammatory hyperplasia of bilateral lingual margins secondary to SJS. Upon admission, no other obvious symptoms were observed except for tongue hyperplasia. The patient suffered from a severe adverse drug reaction caused by acetaminophen 2 months ago and was complicated by liver dysfunction and pulmonary infection. After 1 month of treatment and rehabilitation, he developed a secondary tongue mass and was subsequently admitted to Dept. of Oral and Maxillofacial Surgery Ward 2, the First Affiliated Hospital of Zhengzhou University. After completing the examination, the tongue mass was surgically removed. After a follow-up of 11 months, the patient's condition was satisfactory and no temporary discomfort was observed. The case of tongue mass secondary to SJS is extremely rare. If a stomatologist encounters a similar case, we should carefully inquire about the drug allergy history and recent medication history, and be alert to whether or not they had adverse drug reactions recently.


Subject(s)
Drug Hypersensitivity , Stevens-Johnson Syndrome , Male , Humans , Stevens-Johnson Syndrome/complications , Stevens-Johnson Syndrome/diagnosis , Stevens-Johnson Syndrome/drug therapy , Hyperplasia/complications , Hyperplasia/pathology , Skin , Drug Hypersensitivity/complications , Drug Hypersensitivity/pathology , Tongue
3.
Nat Commun ; 14(1): 6069, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770465

ABSTRACT

The PI3K/AKT pathway plays an essential role in tumour development. NOD-like receptors (NLRs) regulate innate immunity and are implicated in cancer, but whether they are involved in PI3K/AKT pathway regulation is poorly understood. Here, we report that NLRP6 potentiates the PI3K/AKT pathway by binding and destabilizing p85α, the regulatory subunit of PI3K. Mechanistically, NLRP6 recruits the E3 ligase RBX1 to p85α and ubiquitinates lysine 256 on p85α, which is recognized by the autophagy cargo receptor OPTN, causing selective autophagic degradation of p85α and subsequent activation of the PI3K/AKT pathway by reducing PTEN stability. We further show that loss of NLRP6 suppresses cell proliferation, colony formation, cell migration, and tumour growth in glioblastoma cells in vitro and in vivo. Disruption of the NLRP6/p85α interaction using the Pep9 peptide inhibits the PI3K/AKT pathway and generates potent antitumour effects. Collectively, our results suggest that NLRP6 promotes p85α degradation via selective autophagy to drive tumorigenesis, and the interaction between NLRP6 and p85α can be a promising therapeutic target for tumour treatment.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Carcinogenesis , Autophagy , Intracellular Signaling Peptides and Proteins/metabolism
4.
BMC Cancer ; 23(1): 802, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37641028

ABSTRACT

BACKGROUND: We aimed to identify tumor-associated antigen (TAA) biomarkers through bioinformatic analysis and experimental verification, and to evaluate a panel of autoantibodies against tumor-associated antigens (TAAbs) for the detection of oral cancer (OC). METHODS: GEO and TCGA databases were used to screen significantly up-regulated genes related to OC, and protein-protein interaction (PPI) analysis and Cystoscope software were used to identify key genes. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of autoantibodies in 173 OC patients and 173 normal controls, and binary logistic regression analysis was used to build a diagnostic model. RESULTS: Using bioinformatics, we identified 10 key genes (AURKA, AURKB, CXCL8, CXCL10, COL1A1, FN1, FOXM1, MMP9, SPP1 and UBE2C) that were highly expressed in OC. Three autoantibodies (anti-AURKA, anti-CXCL10, anti-FOXM1) were proven to have diagnostic value for OC in the verification set and the validation set. The combined assessment of these three autoantibodies improved the diagnostic value for OC, with an area under the curve (AUC), sensitivity and specificity of 0.741(95%CI:0.690-0.793),58.4% and 80.4%, respectively. In addition, the combination of these three autoantibodies also had high diagnostic value for oral squamous cell carcinoma (OSCC), with an AUC, sensitivity and specificity of 0.731(95%CI:0.674,0.786), 53.8% and 82.1%, respectively. CONCLUSIONS: Our study revealed that AURKA, CXCL10 and FOXM1 may be potential biomarkers and the panel of three autoantibodies (anti-AURKA, anti-CXCL10 and anti-FOXM1) had good diagnostic value for OC.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Mouth Neoplasms/diagnosis , Area Under Curve , Aurora Kinase A , Autoantibodies
5.
Autophagy ; 19(11): 2853-2868, 2023 11.
Article in English | MEDLINE | ID: mdl-37434364

ABSTRACT

ABBREVIATIONS: Baf A1: bafilomycin A1; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; IFN: interferon; IKBKE/IKKi: inhibitor of nuclear factor kappa B kinase subunit epsilon; IRF3: interferon regulatory factor 3; ISG: interferon-stimulated gene; ISRE: IFN-stimulated response element; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; PAMPs: pathogen-associated molecule patterns; RIGI/DDX58: RNA sensor RIG-I; SeV: Sendai virus; siRNA: small interfering RNA; TBK1: TANK binding kinase 1; WT: wild-type; VSV: vesicular stomatitis virus.


Subject(s)
Antiviral Agents , Signal Transduction , Autophagy , Immunity, Innate , Interferons , Humans , Animals , Mice
6.
Signal Transduct Target Ther ; 8(1): 170, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100798

ABSTRACT

Currently, the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide. COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon (IFN-I) signal, along with limited activation of antiviral immune responses as well as enhanced viral infectivity. Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways. However, it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection. In the current study, we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA (mtDNA), which in turn triggers cGAS to activate IFN-I signaling. As countermeasures, SARS-CoV-2 nucleocapsid (N) protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling. Mechanically, N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation (LLPS), subsequently impairs the double-strand DNA (dsDNA) detection ability of cGAS. Taken together, our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.


Subject(s)
COVID-19 , Interferon Type I , Humans , COVID-19/genetics , DNA , DNA Helicases/genetics , Interferon Type I/genetics , Nucleocapsid Proteins/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , SARS-CoV-2/genetics
7.
Biomedicines ; 11(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36831017

ABSTRACT

The Keratinocyte differentiation factor 1 (KDF1) is reported to take part in tooth formation in humans, but the dental phenotype of Kdf1 mutant mice has not been understood. Additionally, the role of the KDF1 gene in dental hard tissue development is rarely known. In this study, we constructed a Kdf1 missense mutation knock-in mouse model through CRISPR/Cas9 gene-editing technology. Enamel samples from wildtypes (WT) and Kdf1 homozygous mutants (HO) were examined using micro-computed tomography (micro-CT), scanning electron microscopy (SEM), an atomic force microscope (AFM) and Raman microspectroscopy. The results showed that a novel Kdf1 missense mutation (c. 908G>C, p.R303P) knock-in mice model was constructed successfully. The enamel of HO mice incisors appeared chalky and defective, exposing the rough interior of the inner enamel and dentin. Micro-CT showed that HO mice had lower volume and mineral density in their tooth enamel. In addition, declined thickness was found in the unerupted enamel layer of incisors in the HO mice. Using SEM and AFM, it was found that enamel prisms in HO mice enamel were abnormally and variously shaped with loose decussating crystal arrangement, meanwhile the enamel rods were partially fused and collapsed, accompanied by large gaps. Furthermore, misshapen nanofibrous apatites were disorderly combined with each other. Raman microspectroscopy revealed a compromised degree of order within the crystals in the enamel after the Kdf1 mutation. To conclude, we identified enamel structure defects in the Kdf1 missense mutation knock-in mice, which displayed fragmentary appearance, abnormally shaped prism structure, decreased mineral density, altered crystal ordering degree and chemical composition of the enamel layer. This may support the potential role of the KDF1 gene in the natural development of enamel.

8.
J Environ Manage ; 330: 117164, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36603256

ABSTRACT

pH is one of the major parameters that influence the granulation and long-term operation of aerobic granular sludge (AGS). In hypersaline wastewater, the impact of pH on granulation and the extent of organic loading rate (OLR) that AGS can withstand under different pH are still not clear. In this study, AGS was cultivated at 3% salinity in three sequencing batch reactors with influent pH values of 5.0, 7.0, and 9.0, respectively, and the OLR was stepwise increased from 2.4 to 16.8 kg COD/m3·d after the granules maturation. The results showed the satisfactory granulation and organic removal under different influent pH conditions, in which the granulation was completed on day 43, 23, and 23, respectively. Neutral influent was the most appropriate for development of salt-tolerant aerobic granular sludge (SAGS), while acidic environment induced the formation of fluffy filamentous granules, and alkaline environment weakened the granule stability. Metagenomic analysis revealed the similar microbial community of neutral and alkaline conditions, with the predominance of genus Paracoccus_f__Rhodobacteraceae. While in acidic environment, fungus Fusarium formed the skeleton of filamentous granules and functioned as the carrier of bacteria including Azoarcus and Pararhodobacter. With the elevation of OLR, SAGSs were found to maintain the compact structure under OLRs of 2.4, 7.2, and 2.4 kg COD/m3·d, and obtain high TOC removal (>95.0%) under OLRs of 7.2, 14.4, and 14.4 kg COD/m3·d, respectively. For hypersaline high-strength organic wastewater, satisfactory TOC removal could also be obtained at broad pH ranges (5.0-9.0), in which neutral environment was the most suitable and acidic environment was the worst. This study contributed to a better understanding of SAGS granulation and treatment of hypersaline high-strength organic wastewater with different pH values.


Subject(s)
Sewage , Wastewater , Sewage/chemistry , Waste Disposal, Fluid/methods , Aerobiosis , Bioreactors/microbiology , Hydrogen-Ion Concentration
9.
Front Oncol ; 12: 939449, 2022.
Article in English | MEDLINE | ID: mdl-36249071

ABSTRACT

As the most common post-transcriptional RNA modification, m6A methylation extensively regulates the structure and function of RNA. The dynamic and reversible modification of m6A is coordinated by m6A writers and erasers. m6A reader proteins recognize m6A modification on RNA, mediating different downstream biological functions. mRNA m6A modification and its corresponding regulators play an important role in cancers, but its characteristics in the precancerous stage are still unclear. In this study, we used oral precancerous DOK cells as a model to explore the characteristics of transcriptome-wide m6A modification and major m6A regulator expression in the precancerous stage compared with normal oral epithelial cell HOEC and oral cancer cell SCC-9 through MeRIP-seq and RT-PCR. Compared with HOEC cells, we found 1180 hyper-methylated and 1606 hypo-methylated m6A peaks and 354 differentially expressed mRNAs with differential m6A peaks in DOK cells. Although the change of m6A modification in DOK cells was less than that in SCC-9 cells, mRNAs with differential m6A in both cell lines were enriched into many identical GO terms and KEGG pathways. Among the 20 known m6A regulatory genes, FTO, ALKBH5, METTL3 and VIRMA were upregulated or downregulated in DOK cells, and the expression levels of 10 genes such as METTL14/16, FTO and IGF2BP2/3 were significantly changed in SCC-9 cells. Our data suggest that precancerous cells showed, to some extent, changes of m6A modification. Identifying some key m6A targets and corresponding regulators in precancerous stage may provide potential intervention targets for the prevention of cancer development through epigenetic modification in the future.

10.
Nat Commun ; 13(1): 5204, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36057605

ABSTRACT

In addition to investigating the virology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), discovering the host-virus dependencies are essential to identify and design effective antiviral therapy strategy. Here, we report that the SARS-CoV-2 entry receptor, ACE2, conjugates with small ubiquitin-like modifier 3 (SUMO3) and provide evidence indicating that prevention of ACE2 SUMOylation can block SARS-CoV-2 infection. E3 SUMO ligase PIAS4 prompts the SUMOylation and stabilization of ACE2, whereas deSUMOylation enzyme SENP3 reverses this process. Conjugation of SUMO3 with ACE2 at lysine (K) 187 hampers the K48-linked ubiquitination of ACE2, thus suppressing its subsequent cargo receptor TOLLIP-dependent autophagic degradation. TOLLIP deficiency results in the stabilization of ACE2 and elevated SARS-CoV-2 infection. In conclusion, our findings suggest selective autophagic degradation of ACE2 orchestrated by SUMOylation and ubiquitination as a potential way to combat SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Autophagy , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Sumoylation , Ubiquitin-Protein Ligases/metabolism
11.
Anal Chim Acta ; 1227: 340311, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36089321

ABSTRACT

Since pesticide residues in food have attracted increasing concern worldwide, it is crucial to develop rapid and sensitive analytical methods to detect pesticide residues and ensure food safety. In this work, via the biotin-streptavidin (SA) recognition system, we constructed a magnetic relaxation switching (MRS) immunosensor for sensitive detection of chlorpyrifos (CPF). With a competitive immunoassay mode, H2O2 and Fe2+ were firstly optimized as the reaction substrates. Wherein, horseradish peroxidase (HRP) acted as enzyme label to catalyze H2O2 and mediated the conversion of Fe2+/Fe3+. By introducing Fe2+/Fe3+ interconversion as MRS signal output, CPF was detected by the immunoreaction induced variations of the transverse relaxation time (ΔT2). The proposed MRS immunosensor exhibited a detection linear range from 0.01 to 1000 ng mL-1 (R2 = 0.9916), with the limit of detection (LOD) of 6 pg mL-1 (3S/M, n = 3). As a proof-of-concept, CPF was easily detected among five different pesticides at a low concentration level (0.1 ng mL-1), as well as in real samples (apple, tea, and lettuce) with recoveries of 80.70-115.30%. Besides, the sensor can realize one step of "separation and detection" towards CPF with the aid of magnetic nanoparticles, which demonstrate its promising potential for pesticide residue detection in food samples and environment.


Subject(s)
Biosensing Techniques , Chlorpyrifos , Pesticide Residues , Biosensing Techniques/methods , Hydrogen Peroxide , Immunoassay/methods , Magnetic Phenomena
12.
J Coll Physicians Surg Pak ; 32(5): 570-574, 2022 May.
Article in English | MEDLINE | ID: mdl-35546689

ABSTRACT

OBJECTIVE: To discover novel ectodysplasin-A (EDA) and wingless-type MMTV integration site family, member 10A (WNT10A) mutations in tooth agenesis (TA) patients. STUDY DESIGN: Case series. PLACE AND DURATION OF STUDY: Guanghua School of Stomatology, Guangzhou, China, from March 2018 to August 2020. METHODOLOGY: EDA and WNT10A were analysed in eleven TA families by PCR and Sanger sequencing. Bioinformatics and structure modelling analyses were performed after identifying different variants, to predict the resulting conformational alterations in WNT10A and EDA. RESULTS:  Two novel mutations (c.796C>A (p.L266I), c.769G>A (p.G257R)) in EDA and two reported mutations (c.637G>A (p.G213S), c.511C>T (p.R171C))in WNT 10A were detected. Combined with the 3D structural analysis, we discovered a correlation between alterations in hydrogen bond formation and the observed phenotypes, potentially affecting protein binding. CONCLUSIONS: The mutations were predicted to be pathogenic through bioinformatics analyses. In addition, by identifying novel mutations, our knowledge regarding the TA spectrum and tooth development was considerably expanded. KEY WORDS:  Anodontia, EDA, WNT 10A, Whole exome sequencing, Odontogenesis.


Subject(s)
Anodontia , Ectodysplasins , Anodontia/genetics , Ectodysplasins/chemistry , Ectodysplasins/genetics , Ectodysplasins/metabolism , Humans , Mutation , Pedigree , Phenotype , Exome Sequencing
13.
Front Genet ; 13: 860611, 2022.
Article in English | MEDLINE | ID: mdl-35559040

ABSTRACT

Esophageal cancer is one of the most commonly diagnosed malignant gastrointestinal tumors. The aim of the study was to explore the diagnostic values of anti-POSTN and anti-TIMP1 autoantibodies in esophageal squamous cell carcinoma (ESCC). Differentially expressed genes (DEGs) associated with esophageal cancer were screened out by the LIMMA method in the Gene Expression Profiling Interactive Analysis (GEPIA) platform. Search Tool for the Retrieval of Interacting Genes (STRING) was used to construct the protein-protein interaction (PPI) based on highly DEGs. The candidate hub genes were the intersection genes calculated based on degree and Maximal Clique Centrality (MCC) algorithms via Cytoscape. A total of 370 participants including 185 ESCC patients and 185 matched normal controls were enrolled in enzyme-linked immunosorbent assay (ELISA) to detect the expression levels of autoantibodies corresponding to POSTN and TIMP1 proteins. A total of 375 DEGs with high expression were obtained in esophageal cancer. A total of 20 hub genes were acquired using the cytoHubba plugin by degree and MCC algorithms. The expression levels of anti-POSTN and anti-TIMP1 autoantibodies were higher in the sera of ESCC patients (p < 0.05). Anti-POSTN autoantibody can diagnose ESCC patients with an AUC of 0.638 at the specificity of 90.27% and sensitivity of 27.57%, and anti-TIMP1 autoantibody can diagnose ESCC patients with an AUC of 0.585 at the specificity of 90.27% and sensitivity of 20.54% (p < 0.05). In addition, anti-POSTN and anti-TIMP1 autoantibodies can distinguish ESCC patients from normal controls in most clinical subgroups (p < 0.05). In conclusion, anti-POSTN and anti-TIMP1 autoantibodies may be considered the potential biomarkers in the clinical diagnosis of ESCC.

14.
Autophagy ; 18(10): 2288-2302, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35100065

ABSTRACT

Deubiquitination plays an important role in the regulation of the crosstalk between macroautophagy/autophagy and innate immune signaling, yet its regulatory mechanisms are not fully understood. Here we identify the deubiquitinase OTUD7B as a negative regulator of antiviral immunity by targeting IRF3 (interferon regulatory factor 3) for selective autophagic degradation. Mechanistically, OTUD7B interacts with IRF3, and activates IRF3-associated cargo receptor SQSTM1/p62 (sequestosome 1) by removing its K63-linked poly-ubiquitin chains at lysine 7 (K7) to enhance SQSTM1 oligomerization. Moreover, viral infection increased the expression of OTUD7B, which forms a negative feedback loop by promoting IRF3 degradation to balance type I interferon (IFN) signaling. Taken together, our study reveals a specific role of OTUD7B in mediating the activation of cargo receptors in a substrate-dependent manner, which could be a potential target against excessive immune responses.Abbreviations: Baf A1: bafilomycin A1; CGAS: cyclic GMP-AMP synthase; DDX58/RIG-I: DExD/H-box helicase 58; DSS: dextran sodium sulfate; DUBs: deubiquitinating enzymes; GFP: green fluorescent protein; IFN: interferon; IKKi: IKBKB/IkappaB kinase inhibitor; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; PAMPs: pathogen-associated molecular patterns; SeV: Sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; Ub: ubiquitin; WT: wild-type; VSV: vesicular stomatitis virus.


Subject(s)
Interferon Regulatory Factor-3 , Interferon Type I , Antiviral Agents , Autophagy , Deubiquitinating Enzymes/metabolism , Dextrans/metabolism , Green Fluorescent Proteins/metabolism , I-kappa B Kinase , Immunity, Innate/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Lysine , Nucleotidyltransferases/metabolism , Pathogen-Associated Molecular Pattern Molecules , RNA, Small Interfering , Sequestosome-1 Protein/metabolism , Ubiquitins/metabolism
15.
Cell Death Differ ; 29(1): 40-53, 2022 01.
Article in English | MEDLINE | ID: mdl-34257412

ABSTRACT

As a core kinase of antiviral immunity, the activity and stability of TANK-binding kinase 1 (TBK1) is tightly controlled by multiple post-translational modifications. Although it has been demonstrated that TBK1 stability can be regulated by ubiquitin-dependent proteasome pathway, it is unclear whether another important protein degradation pathway, autophagosome pathway, can specifically affect TBK1 degradation by cargo receptors. Here we report that E3 ubiquitin ligase NEDD4 functions as a negative regulator of type I interferon (IFN) signaling by targeting TBK1 for degradation at the late stage of viral infection, to prevent the host from excessive immune response. Mechanically NEDD4 catalyzes the K27-linked poly-ubiquitination of TBK1 at K344, which serves as a recognition signal for cargo receptor NDP52-mediated selective autophagic degradation. Taken together, our study reveals the regulatory role of NEDD4 in balancing TBK1-centered type I IFN activation and provides insights into the crosstalk between selective autophagy and antiviral signaling.


Subject(s)
Interferon Type I , Protein Serine-Threonine Kinases/metabolism , Interferon Type I/metabolism , Macroautophagy , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
16.
Nanomedicine ; 37: 102435, 2021 10.
Article in English | MEDLINE | ID: mdl-34186257

ABSTRACT

The biological behaviors of magnetic graphene oxide (MGO) in a static magnetic field (SMF) are unknown. The current study is to investigate the cellular behaviors, osteogenesis and the mechanism in BMSCs treated with MGO combined with an SMF. Results showed that the synthetic MGO particles were bio-compatible and could significantly improve the osteogenesis of BMSCs under SMFs, as verified by elevated alkaline phosphatase activity, mineralized nodule formation, and expressions of mRNA and protein levels. Under SMF at the same intensity, the addition of graphene oxide to Fe3O4 could increase the osteogenic ability of BMSCs. The Wnt/ß-catenin pathway was indicated to be related to the MGO-driven osteogenic behavior of the BMSCs under SMF. Taken together, our findings suggested that MGO under an SMF could promote osteogenesis in BMSCs through the Wnt/ß-catenin pathway and hence should attract more attention for practical applications in bone tissue regeneration.


Subject(s)
Graphite/pharmacology , Magnetic Fields , Magnetite Nanoparticles/chemistry , Osteogenesis/genetics , Animals , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/radiation effects , Graphite/chemistry , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/radiation effects , Osteogenesis/drug effects , Osteogenesis/radiation effects , Rats , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/radiation effects
17.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: mdl-33895773

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells , COVID-19 Drug Treatment
18.
Autophagy ; 17(6): 1367-1378, 2021 06.
Article in English | MEDLINE | ID: mdl-32453962

ABSTRACT

Macroautophagy/autophagy, a eukaryotic homeostatic process that sequesters cytoplasmic constituents for lysosomal degradation, is orchestrated by a number of autophagy-related (ATG) proteins tightly controlled by post-translational modifications. However, the involvement of reversible ubiquitination in the regulation of autophagy remains largely unclear. Here, we performed a single-guide RNA-based screening assay to investigate the functions of deubiquitinating enzymes (DUBs) in regulating autophagy. We identified previously unrecognized roles of several DUBs in modulating autophagy at multiple levels by targeting various ATG proteins. Mechanistically, we demonstrated that STAMBP/AMSH (STAM-binding protein) promotes the stabilization of ULK1 by removing its lysine 48 (K48)-linked ubiquitination, whereas OTUD7B mediates the degradation of PIK3 C3 by enhancing its K48-linked ubiquitination, thus positively or negatively affects autophagy flux, respectively. Together, our study elaborated on the broad involvement of DUBs in regulating autophagy and uncovered the critical roles of the reversible ubiquitination in the modification of ATG proteins.Abbreviations: ATG: autophagy-related; Baf A1: bafilomycin A1; DUB: deubiquitinating enzyme; EBSS: Earle's balanced salt solution; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OTUD7B: OTU domain-containing protein 7B; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; sgRNA: single-guide RNA; SQSTM1/p62: sequestosome 1; STAMBP/AMSH: STAM-binding protein; ULK1: unc-51 like autophagy activating kinase 1; USP: ubiquitin specific peptidase.


Subject(s)
Autophagy/physiology , High-Throughput Screening Assays , Ubiquitin-Specific Proteases/metabolism , Ubiquitination/physiology , Endopeptidases/metabolism , High-Throughput Screening Assays/methods , Humans , Lysosomes/metabolism , Protein Processing, Post-Translational/physiology
19.
Exp Cell Res ; 398(2): 112385, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33212146

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a common malignant tumor in the world. Radiotherapy is one of the standard therapies for patients with OSCC, but its clinical efficiency is limited due to radioresistance. In this study, we identified a mechanism of such resistance regulated by Ubiquitin-specific protease 14 (USP14). USP14 expression was significantly increased in clinical OSCC tissue samples and cell lines, and OSCC patients with high USP14 expression predicted poor overall survival rate. Additionally, a negative correlation between USP14 and LC3B was observed in patients with OSCC. We then found that irradiation (IR)-reduced cell survival of OSCC cells lines was further decreased when USP14 was knocked down. However, USP14 over-expression significantly promoted the cell viability of OSCC cells after IR treatment. Colony formation analysis confirmed thatafter IR treatment,USP14 knockdown markedly decreased the proliferation of OSCC cells, but over-expressing USP14 significantly up-regulated the proliferative activity of OSCC cells. Furthermore, DNA damage caused by IR was enhanced by USP14 knockdown, while been suppressed in OSCC cells with USP14 over-expression. Additionally, IR-inducedapoptosis was further promoted by USP14 knockdown in OSCC cells, which was, however, significantly abolished by USP14 over-expression.Moreover, our in vivo studies showed that IR-reduced tumor growth and tumor weight were further enhanced by USP14 knockdown in OSCC tumor-bearing nude mice. Finally, we found that USP14 knockdown could promote IR-induced autophagy by increasing LC3BII and γH2AX expression levels in IR-treated OSCC cells. However, this event was markedly abolished by ATG5 knockdown, subsequently restoring the cell proliferation in IR-incubated OSCC cells.Finally, we found that USP14-mediated apoptosis was autophagy-dependent in IR-treated OSCC cells. Taken together, these findings suggested that suppressing USP14 could alleviateradioresistancein OSCC both in vitro and in vivo by inducing apoptosis and autophagy, and thus could be served as a promising therapeutic strategy for OSCC treatment.


Subject(s)
Autophagy , Carcinoma, Squamous Cell/metabolism , Mouth Neoplasms/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Apoptosis , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/radiotherapy , Cell Proliferation , Cell Survival , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mouth Neoplasms/pathology , Mouth Neoplasms/radiotherapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplasms, Experimental/radiotherapy , Tumor Cells, Cultured
20.
Breast Cancer ; 28(1): 48-59, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32607943

ABSTRACT

BACKGROUND: Emerging studies examined the association between sedentary behavior and risk of breast cancer, however, the dose-response relationship remained unclear. We aim to explore dose-response relationship of sedentary behavior and breast cancer risk based on relevant cohort studies. METHODS: Online database (PubMed, Web of Science, EMBASE and Cochrane Library) were searched up to March 29, 2019. Overall relative risk (RR) with 95% confidence interval (CI) were pooled, and generalized least squares (GLS) method and restricted cubic splines were applied to evaluate the linear or nonlinear relation. Attributable risk proportion (ARP) was used to assess the health hazards of sedentary behavior in different countries. RESULTS: Eight prospective studies were included in the meta-analysis, containing 17 048 breast cancer cases and 426 506 participants. The borderline statistical association was detected between prolonged sedentary behavior and risk of breast cancer (RR 1.08, 95% CI 0.99-1.19). Linear association between sedentary and breast cancer was observed (Pnonlinearity = 0.262), and for 1 h/d increment of sedentary behavior, there was 1% increase of breast cancer risk (RR 1.01, 95% CI1.00-1.02). Similar results were also found between TV viewing and risk of breast cancer (Pnonlinearity = 0.551), with 1 h/day increment of TV viewing daily attributing to 2% increase of breast cancer risk (RR 1.02, 95% CI 1.00-1.04). Moreover, sedentary behavior may statistically increase the risk of breast cancer by 21.6% for Asian countries, 8.26% for North America. CONCLUSIONS: Sedentary behavior was validated as a risk factor of breast cancer through dose-response analysis, especially TV viewing.


Subject(s)
Breast Neoplasms/epidemiology , Sedentary Behavior , Breast Neoplasms/prevention & control , Female , Humans , Prospective Studies , Protective Factors , Risk Assessment/statistics & numerical data , Risk Factors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL