Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
Foods ; 13(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928769

ABSTRACT

Two studies were conducted to investigate the impact of fresh pork display lamps on consumers' sensory responses to pork products. In the first experiment, 63 participants were asked to evaluate pork products with different degrees of freshness under four fresh pork display lights and two LED lights. In the other experiment, 30 subjects participated in the Farnsworth-Munsell 100 hue test under the same lamps, with the aim of showing whether the fresh pork display lamps impaired color discrimination. The results showed that the light source had a significant effect on the color appearance evaluation of the pork products. The ratings for perceived freshness under the fresh pork display lamps were significantly higher than those of ordinary LED lamps, while the color discrimination performance of the subjects under those lamps was poor. It was demonstrated that improper component proportions of the light spectrum could influence observers' assessment of meat quality and weaken the observers' ability to distinguish the freshness level. Through this study, the authors would like to remind lamp users and manufacturers to not only be concerned about the improvement in the color appearance of pork, but also the need for consumers to be aware of the authentic freshness of the pork products.

2.
Sensors (Basel) ; 23(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37420871

ABSTRACT

Colorimetric characterization is the basis of color information management in color imaging systems. In this paper, we propose a colorimetric characterization method based on kernel partial least squares (KPLS) for color imaging systems. This method takes the kernel function expansion of the three-channel response values (RGB) in the device-dependent space of the imaging system as input feature vectors, and CIE-1931 XYZ as output vectors. We first establish a KPLS color-characterization model for color imaging systems. Then we determine the hyperparameters based on nested cross validation and grid search; a color space transformation model is realized. The proposed model is validated with experiments. The CIELAB, CIELUV and CIEDE2000 color differences are used as evaluation metrics. The results of the nested cross validation test for the ColorChecker SG chart show that the proposed model is superior to the weighted nonlinear regression model and the neural network model. The method proposed in this paper has good prediction accuracy.


Subject(s)
Algorithms , Colorimetry , Least-Squares Analysis , Neural Networks, Computer , Information Management , Color
3.
Front Genet ; 12: 801728, 2021.
Article in English | MEDLINE | ID: mdl-35087574

ABSTRACT

Naturally derived bioactive peptides with antihypertensive activities serve as promising alternatives to pharmaceutical drugs. There are few relevant reports on the mapping relationship between the EC50 value of antihypertensive peptide activity (AHTPA-EC50) and its corresponding amino acid sequence (AAS) at present. In this paper, we have constructed two group series based on sorting natural logarithm of AHTPA-EC50 or sorting its corresponding AAS encoding number. One group possesses two series, and we find that there must be a random number series in any group series. The random number series manifests fractal characteristics, and the constructed series of sorting natural logarithm of AHTPA-EC50 shows good autocorrelation characteristics. Therefore, two non-linear autoregressive models with exogenous input (NARXs) were established to describe the two series. A prediction method is further designed for AHTPA-EC50 prediction based on the proposed model. Two dynamic neural networks for NARXs (NARXNNs) are designed to verify the two series characteristics. Dipeptides and tripeptides are used to verify the proposed prediction method. The results show that the mean square error (MSE) of prediction is about 0.5589 for AHTPA-EC50 prediction when the classification of AAS is correct. The proposed method provides a solution for AHTPA-EC50 prediction.

4.
Opt Express ; 28(19): 28085-28100, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988087

ABSTRACT

The three-channel spectral sensitivity of a trichromatic camera represents the characteristics of system color space. It is a mapping bridge from the spectral information of a scene to the response value of a camera. In this paper, we propose an estimation method for three-channel spectral sensitivity of a trichromatic camera. It includes calibration experiment by orthogonal test design and the data processing by window filtering. The calibration experiment was first designed by an orthogonal table of the 9-level and 3-factor. A rough estimation model of spectral sensitivity is established on the data pairs of the system input and output in calibration experiments. The data of rough estimation is then modulated by two window filters on frequency and spatial domain. The Luther-Ives condition and the smoothness condition are introduced to design the window, and help to achieve the optimal estimation of the system spectral sensitivity. Finally, the proposed method is verified by some comparison experiments. The results show that the estimated spectral sensitivity is basically consistent with the measured results of the monochromator experiments, the relative full-scale errors of the RGB three-channel is obviously lower than the Wiener filtering method and the Fourier band-limitedness method. The proposed method can estimate the spectral sensitivity of the trichromatic digital camera very well, which is of great significance for the colorimetric characterization and evaluation of imaging systems.

5.
Appl Opt ; 57(22): 6552-6558, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30117894

ABSTRACT

The slanted-edge method for modulation transfer function (MTF) measurement uses edge target images whose gray values are often affected by noise and other factors, decreasing its accuracy. We first analyze the ill-posedness in the edge spread function (ESF) regression caused by noise. Second, we propose a regularized slanted-edge method to solve this problem by incorporating a Tikhonov regularization term. Combined with varying precision weights, the ESF is solved using the variational principle, and the MTF is estimated using the regularized ESF. The regularized slanted-edge method is verified for Gaussian, gamma, and Rayleigh noise. The results show that our method improves the accuracy by 0.01-9.02% and 4.33% on average. The proposed method is more robust to noise and accurate than the slanted-edge method.

6.
Appl Opt ; 57(7): B83-B91, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29521991

ABSTRACT

The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.

7.
Chem Asian J ; 8(10): 2401-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23704043

ABSTRACT

We present quantum conductance measurements of germanium by means of an electrochemical scanning tunneling microscope (STM) break junction based on a jump-to-contact mechanism. Germanium nanowires between a platinum/iridium tip and different substrates were constructed to measure the quantum conductance. By applying appropriate potentials to the substrate and the tip, the process of heterogeneous contact and homogeneous breakage was realized. Typical conductance traces exhibit steps at 0.025 and 0.05 G0. The conductance histogram indicates that the conductance of germanium nanowires is located between 0.02 and 0.15 G0 in the low-conductance region and is free from the influence of substrate materials. However, the distribution of conductance plateaus is too discrete to display distinct peaks in the conductance histogram of the high-conductance region.

SELECTION OF CITATIONS
SEARCH DETAIL