Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062864

ABSTRACT

The dimensions of organs such as flowers, leaves, and seeds are governed by processes of cellular proliferation and expansion. In soybeans, the dimensions of these organs exhibit a strong correlation with crop yield, quality, and other phenotypic traits. Nevertheless, there exists a scarcity of research concerning the regulatory genes influencing flower size, particularly within the soybean species. In this study, 309 samples of 3 soybean types (123 cultivar, 90 landrace, and 96 wild) were re-sequenced. The microscopic phenotype of soybean flower organs was photographed using a three-eye microscope, and the phenotypic data were extracted by means of computer vision. Pearson correlation analysis was employed to assess the relationship between petal and seed phenotypes, revealing a strong correlation between the sizes of these two organs. Through GWASs, SNP loci significantly associated with flower organ size were identified. Subsequently, haplotype analysis was conducted to screen for upstream and downstream genes of these loci, thereby identifying potential candidate genes. In total, 77 significant SNPs associated with vexil petals, 562 significant SNPs associated with wing petals, and 34 significant SNPs associated with keel petals were found. Candidate genes were screened by candidate sites, and haplotype analysis was performed on the candidate genes. Finally, the present investigation yielded 25 and 10 genes of notable significance through haplotype analysis in the vexil and wing regions, respectively. Notably, Glyma.07G234200, previously documented for its high expression across various plant organs, including flowers, pods, leaves, roots, and seeds, was among these identified genes. The research contributes novel insights to soybean breeding endeavors, particularly in the exploration of genes governing organ development, the selection of field materials, and the enhancement of crop yield. It played a role in the process of material selection during the growth period and further accelerated the process of soybean breeding material selection.


Subject(s)
Flowers , Genome-Wide Association Study , Glycine max , Phenotype , Polymorphism, Single Nucleotide , Glycine max/genetics , Glycine max/anatomy & histology , Glycine max/growth & development , Flowers/genetics , Flowers/anatomy & histology , Flowers/growth & development , Haplotypes , Quantitative Trait Loci , Seeds/genetics , Seeds/growth & development , Seeds/anatomy & histology
2.
Plants (Basel) ; 13(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39065473

ABSTRACT

The main type of saponins occurring in the root of Platycodon grandiflorus (Jacq.) A. DC. are oleanolic acid glycosides. The CYP716 gene family plays a major role in catalyzing the conversion of ß-amyrin into oleanolic acid. However, studies on the CYP716 genes in P. grandiflorus are limited, and its evolutionary history remains poorly understood. In this study, 22 PgCYP716 genes were identified, distributed among seven subfamilies. Cis-acting elements of the PgCYP716 promoters were mainly involved in plant hormone regulation and responses to abiotic stresses. PgCYP716A264, PgCYP716A391, PgCYP716A291, and PgCYP716BWv3 genes were upregulated in the root and during saponin accumulation, as shown by RNA-seq analysis, suggesting that these four genes play an important role in saponin synthesis. The results of subcellular localization indicated that these four genes encoded membrane proteins. Furthermore, the catalytic activity of these four genes was proved in the yeast, which catalyzed the conversion of ß-amyrin into oleanolic acid. We found that the content of ß-amyrin, platycodin D, platycoside E, platycodin D3, and total saponins increased significantly when either of the four genes was over expressed in the transgenic hair root. In addition, the expression of PgSS, PgGPPS2, PgHMGS, and PgSE was also upregulated while these four genes were overexpressed. These data support that these four PgCYP716 enzymes oxidize ß-amyrin to produce oleanolic acid, ultimately promoting saponin accumulation by activating the expression of upstream pathway genes. Our results enhanced the understanding of the functional variation among the PgCYP716 gene family involved in triterpenoid biosynthesis and provided a theoretical foundation for improving saponin content and enriching the saponin biosynthetic pathway in P. grandiflorus.

3.
Sci Rep ; 14(1): 15994, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987328

ABSTRACT

Mitigating pre-harvest sprouting (PHS) and post-harvest food loss (PHFL) is essential for enhancing food securrity. To reduce food loss, the use of plant derived specialized metabolites can represent a good approach to develop a more eco-friendly agriculture. Here, we have discovered that soybean seeds hidden underground during winter by Tscherskia triton and Apodemus agrarius during winter possess a higher concentration of volatile organic compounds (VOCs) compared to those remaining exposed in fields. This selection by rodents suggests that among the identified volatiles, 3-FurAldehyde (Fur) and (E)-2-Heptenal (eHep) effectively inhibit the growth of plant pathogens such as Aspergillus flavus, Alternaria alternata, Fusarium solani and Pseudomonas syringae. Additionally, compounds such as Camphene (Cam), 3-FurAldehyde, and (E)-2-Heptenal, suppress the germination of seeds in crops including soybean, rice, maize, and wheat. Importantly, some of these VOCs also prevent rice seeds from pre-harvest sprouting. Consequently, our findings offer straightforward and practical approaches to seed protection and the reduction of PHS and PHFL, indicating potential new pathways for breeding, and reducing both PHS and pesticide usage in agriculture.


Subject(s)
Agriculture , Glycine max , Seeds , Volatile Organic Compounds , Seeds/microbiology , Seeds/growth & development , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/pharmacology , Animals , Glycine max/microbiology , Glycine max/growth & development , Agriculture/methods , Germination , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Rodentia/microbiology
4.
Nat Commun ; 15(1): 5852, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992018

ABSTRACT

The establishment of symbiotic interactions between leguminous plants and rhizobia requires complex cellular programming activated by Rhizobium Nod factors (NFs) as well as type III effector (T3E)-mediated symbiotic signaling. However, the mechanisms by which different signals jointly affect symbiosis are still unclear. Here we describe the mechanisms mediating the cross-talk between the broad host range rhizobia Sinorhizobium fredii HH103 T3E Nodulation Outer Protein L (NopL) effector and NF signaling in soybean. NopL physically interacts with the Glycine max Remorin 1a (GmREM1a) and the NFs receptor NFR5 (GmNFR5) and promotes GmNFR5 recruitment by GmREM1a. Furthermore, NopL and NF influence the expression of GmRINRK1, a receptor-like kinase (LRR-RLK) ortholog of the Lotus RINRK1, that mediates NF signaling. Taken together, our work indicates that S. fredii NopL can interact with the NF signaling cascade components to promote the symbiotic interaction in soybean.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Plant , Glycine max , Plant Proteins , Sinorhizobium fredii , Symbiosis , Glycine max/microbiology , Glycine max/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Sinorhizobium fredii/metabolism , Sinorhizobium fredii/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Signal Transduction , Plant Root Nodulation/genetics , Plants, Genetically Modified
5.
J Agric Food Chem ; 72(30): 17084-17098, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39013023

ABSTRACT

Symbiotic nitrogen fixation carried out by the soybean-rhizobia symbiosis increases soybean yield and reduces the amount of nitrogen fertilizer that has been applied. MicroRNAs (miRNAs) are crucial in plant growth and development, prompting an investigation into their role in the symbiotic interaction of soybean with partner rhizobia. Through integrated small RNA, transcriptome, and degradome sequencing analysis, 1215 known miRNAs, 314 of them conserved, and 187 novel miRNAs were identified, with 44 differentially expressed miRNAs in soybean roots inoculated with Sinorhizobium fredii HH103 and a ttsI mutant. The study unveiled that the known miRNA gma-MIR398a-p5 was downregulated in the presence of the ttsI mutation, while the target gene of gma-MIR398a-p5, Glyma.06G007500, associated with nitrogen metabolism, was upregulated. The results of this study offer insights for breeding high-efficiency nitrogen-fixing soybean varieties, enhancing crop yield and quality.


Subject(s)
Glycine max , Nitrogen Fixation , Sinorhizobium fredii , Symbiosis , Transcriptome , Glycine max/microbiology , Glycine max/genetics , Glycine max/metabolism , Glycine max/growth & development , Sinorhizobium fredii/genetics , Sinorhizobium fredii/metabolism , Sinorhizobium fredii/physiology , Nitrogen Fixation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Plant , Plant Roots/microbiology , RNA, Plant/genetics , RNA, Plant/metabolism
6.
Curr Issues Mol Biol ; 46(4): 3342-3352, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38666939

ABSTRACT

Increasing the soybean-planting area and increasing the soybean yield per unit area are two effective solutions to improve the overall soybean yield. Northeast China has a large saline soil area, and if soybeans could be grown there with the help of isolated saline-tolerant rhizobia, the soybean cultivation area in China could be effectively expanded. In this study, soybeans were planted in soils at different latitudes in China, and four strains of rhizobia were isolated and identified from the soybean nodules. According to the latitudes of the soil-sampling sites from high to low, the four isolated strains were identified as HLNEAU1, HLNEAU2, HLNEAU3, and HLNEAU4. In this study, the isolated strains were identified for their resistances, and their acid and saline tolerances and nitrogen fixation capacities were preliminarily identified. Ten representative soybean germplasm resources in Northeast China were inoculated with these four strains, and the compatibilities of these four rhizobium strains with the soybean germplasm resources were analyzed. All four isolates were able to establish different extents of compatibility with 10 soybean resources. Hefeng 50 had good compatibility with the four isolated strains, while Suinong 14 showed the best compatibility with HLNEAU2. The isolated rhizobacteria could successfully establish symbiosis with the soybeans, but host specificity was also present. This study was a preliminary exploration of the use of salinity-tolerant rhizobacteria to help the soybean nitrogen fixation in saline soils in order to increase the soybean acreage, and it provides a valuable theoretical basis for the application of saline-tolerant rhizobia.

7.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542270

ABSTRACT

Soybean (Glycine max) plants first emerged in China, and they have since been established as an economically important oil crop and a major source of daily protein for individuals throughout the world. Seed emergence height is the first factor that ensures seedling adaptability to field management practices, and it is closely related to epicotyl length. In the present study, the Suinong 14 and ZYD00006 soybean lines were used as parents to construct chromosome segment substitution lines (CSSLs) for quantitative trait loci (QTL) identification. Seven QTLs were identified using two years of epicotyl length measurement data. The insertion region of the ZYD00006 fragment was identified through whole genome resequencing, with candidate gene screening and validation being performed through RNA-Seq and qPCR, and Glyma.08G142400 was ultimately selected as an epicotyl length-related gene. Through combined analyses of phenotypic data from the study population, Glyma.08G142400 expression was found to be elevated in those varieties exhibiting longer epicotyl length. Haplotype data analyses revealed that epicotyl data were consistent with haplotype typing. In summary, the QTLs found to be associated with the epicotyl length identified herein provide a valuable foundation for future molecular marker-assisted breeding efforts aimed at improving soybean emergence height in the field, with the Glyma.08G142400 gene serving as a regulator of epicotyl length, offering new insight into the mechanisms that govern epicotyl development.


Subject(s)
Glycine max , Quantitative Trait Loci , Humans , Glycine max/genetics , Chromosome Mapping , Plant Breeding , Seeds/metabolism , Data Mining
8.
Plant Commun ; 5(4): 100888, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38532645

ABSTRACT

Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.


Subject(s)
Fabaceae , Root Nodules, Plant/physiology , Symbiosis
10.
Plant Biotechnol J ; 22(3): 759-773, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37937736

ABSTRACT

Soybean is one of the most economically important crops worldwide and an important source of unsaturated fatty acids and protein for the human diet. Consumer demand for healthy fats and oils is increasing, and the global demand for vegetable oil is expected to double by 2050. Identification of key genes that regulate seed fatty acid content can facilitate molecular breeding of high-quality soybean varieties with enhanced fatty acid profiles. Here, we analysed the genetic architecture underlying variations in soybean seed fatty acid content using 547 accessions, including mainly landraces and cultivars from northeastern China. Through fatty acid profiling, genome re-sequencing, population genomics analyses, and GWAS, we identified a SEIPIN homologue at the FA9 locus as an important contributor to seed fatty acid content. Transgenic and multiomics analyses confirmed that FA9 was a key regulator of seed fatty acid content with pleiotropic effects on seed protein and seed size. We identified two major FA9 haplotypes in 1295 resequenced soybean accessions and assessed their phenotypic effects in a field planting of 424 accessions. Soybean accessions carrying FA9H2 had significantly higher total fatty acid contents and lower protein contents than those carrying FA9H1 . FA9H2 was absent in wild soybeans but present in 13% of landraces and 26% of cultivars, suggesting that it may have been selected during soybean post-domestication improvement. FA9 therefore represents a useful genetic resource for molecular breeding of high-quality soybean varieties with specific seed storage profiles.


Subject(s)
Fatty Acids , Glycine max , Humans , Fatty Acids/metabolism , Glycine max/genetics , Fatty Acids, Unsaturated/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Oils/metabolism , Seeds/genetics , Seeds/metabolism
11.
J Hazard Mater ; 465: 133263, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38118200

ABSTRACT

Lead (Pb) and cadmium (Cd) are common heavy metal pollutants that are often found in the soil in soybean agricultural production, adversely impacting symbiotic nitrogen fixation in soybean nodules. In this study, the exposure of soybean nodules to Pb and Cd stress was found to reduce nitrogenase activity. Shifts in the RNA methylation profiles of nodules were subsequently examined by profiling the differential expression of genes responsible for regulating m6A modifications and conducting transcriptome-wide analyses of m6A methylation profiles under Pb and Cd stress condition. Differentially methylated genes (DMGs) that were differentially expressed were closely related to reactive oxygen species activity and integral membrane components. Overall, 19 differentially expressed DMGs were ultimately determined to be responsive to both Pb and Cd stress, including Glyma.20G082450, which encodes GmAMT1;1 and was confirmed to be a positive regulator of nodules tolerance to Pb and Cd. Together, these results are the first published data corresponding to transcriptome-wide m6A methylation patterns in soybean nodules exposed to Cd and Pb stress, and provide novel molecular insight into the regulation of Pb and Cd stress responses in nodules, highlighting promising candidate genes related to heavy metal tolerance, that may also be amenable to application in agricultural production. ENVIRONMENTAL IMPLICATIONS: Lead (Pb) and cadmium (Cd) are prevalent heavy metal pollutants in soil, and pose a major threat to crop production, food security and human health. Here, MeRIP-seq approach was employed to analyze the regulatory network activated in soybean nodules under Pb and Cd stress, ultimately leading to the identification of 19 shared differentially expressed DMGs. When overexpressed, GmATM1;1 was found to enhance the Pb and Cd tolerance of soybean nodules. These results provide a theoretical basis for studies on tolerance to heavy metals in symbiotic nitrogen fixation, and provide an approach to enhancing Pb and Cd tolerance in soybean production.


Subject(s)
Environmental Pollutants , Metals, Heavy , Soil Pollutants , Humans , Cadmium/metabolism , Transcriptome , Glycine max , Lead , Metals, Heavy/metabolism , Methylation , Soil , Soil Pollutants/metabolism
12.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139327

ABSTRACT

Rhizobia secrete effectors that are essential for the effective establishment of their symbiotic interactions with leguminous host plants. However, the signaling pathways governing rhizobial type III effectors have yet to be sufficiently characterized. In the present study, the type III effectors, NopAA and NopD, which perhaps have signaling pathway crosstalk in the regulation of plant defense responses, have been studied together for the first time during nodulation. Initial qRT-PCR experiments were used to explore the impact of NopAA and NopD on marker genes associated with symbiosis and defense responses. The effects of these effectors on nodulation were then assessed by generating bacteria in which both NopAA and NopD were mutated. RNA-sequencing analyses of soybean roots were further utilized to assess signaling crosstalk between NopAA and NopD. NopAA mutant and NopD mutant were both found to repress GmPR1, GmPR2, and GmPR5 expression in these roots. The two mutants also significantly reduced nodules dry weight and the number of nodules and infection threads, although these changes were not significantly different from those observed following inoculation with double-mutant (HH103ΩNopAA&NopD). NopAA and NopD co-mutant inoculation was primarily found to impact the plant-pathogen interaction pathway. Common differentially expressed genes (DEGs) associated with both NopAA and NopD were enriched in the plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathways, and no further changes in these common DEGs were noted in response to inoculation with HH103ΩNopAA&NopD. Glyma.13G279900 (GmNAC27) was ultimately identified as being significantly upregulated in the context of HH103ΩNopAA&NopD inoculation, serving as a positive regulator of nodulation. These results provide new insight into the synergistic impact that specific effectors can have on the establishment of symbiosis and the responses of host plant proteins.


Subject(s)
Fabaceae , Glycine max , Glycine max/genetics , Plant Root Nodulation/genetics , Fabaceae/metabolism , Plant Roots/microbiology , Plant Proteins/metabolism , Symbiosis/genetics
13.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003711

ABSTRACT

Symbiotic nodulation between leguminous plants and rhizobia is a critical biological interaction. The type III secretion system (T3SS) employed by rhizobia manipulates the host's nodulation signaling, analogous to mechanisms used by certain bacterial pathogens for effector protein delivery into host cells. This investigation explores the interactive signaling among type III effectors HH103ΩNopC, HH103ΩNopT, and HH103ΩNopL from SinoRhizobium fredii HH103. Experimental results revealed that these effectors positively regulate nodule formation. Transcriptomic analysis pinpointed GmPHT1-4 as the key gene facilitating this effector-mediated signaling. Overexpression of GmPHT1-4 enhances nodulation, indicating a dual function in nodulation and phosphorus homeostasis. This research elucidates the intricate regulatory network governing Rhizobium-soybean (Glycine max (L.) Merr) interactions and the complex interplay between type III effectors.


Subject(s)
Fabaceae , Sinorhizobium fredii , Fabaceae/genetics , Glycine max/metabolism , Sinorhizobium fredii/genetics , Genes, Bacterial , Signal Transduction , Symbiosis/genetics , Bacterial Proteins/metabolism
14.
Theor Appl Genet ; 136(10): 212, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37740151

ABSTRACT

KEY MESSAGE: GmTSA and GmALS were screened out for salt stress in soybean and explore the poteintial amino acid secondary metabolism pathways. Soybean (Glycine max L.) is an oil and protein crop of global importance, and salinity has significant effects on soybean growth. Here, a population of soybean chromosome segment substitution lines was screened to identify highly salt-tolerant lines. In total, 24 quantitative trait loci (QTLs) on seven chromosomes were associated with salt tolerance, and CSSL_R71 was selected for further analysis. Although numerous genes were differentially expressed in CSSL_R71 in response to salt statically no differently, transcript levels of classical salt-response genes, including those of the salt overly sensitive pathway. Rather, salt tolerance in CSSL_R71 was associated with changes in amino acid and lipid metabolism. In particular, changes in p-coumaric acid, shikimic acid, and pyrrole-2-carboxylic acid levels accompanied salt tolerance in CSSL_R71. Eleven differentially expressed genes (DEGs) related to amino acid and secondary metabolism were identified as candidate genes on the substituted chromosome fragment. Six of these showed differences in coding sequence between the parental genotypes. Crucially, overexpression of GmTSA (Glyma.03G158400, tryptophan synthase) significantly enhanced salt tolerance in soybean hairy roots, whereas overexpression of GmALS (Glyma.13G241000, acetolactate synthase) decreased salt tolerance. Two KASP markers were developed for GmALS and used to genotype salt-tolerant and salt-sensitive lines in the CSSL population. Non-synonymous mutations were directly associated with salt tolerance. Taken together, these data provide evidence that changes in amino acid and secondary metabolism have the potential to confer salt tolerance in soybean.


Subject(s)
Amino Acids , Glycine max , Secondary Metabolism , Glycine max/genetics , Salt Tolerance/genetics , Salt Stress
15.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239903

ABSTRACT

Phytophthora root rot in soybeans is caused by a pathogen called Phytophthora sojae (P. sojae), which results in a significant decrease in soybean production within affected regions. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a key post-transcriptional regulatory role in eukaryotes. In this paper, the miRNAs that respond to P. sojae were analyzed from the gene level to complement the study of molecular resistance mechanisms in soybean. The study utilized high-throughput sequencing of soybean data to predict miRNAs that respond to P. sojae, analyze their specific functions, and verify regulatory relationships using qRT-PCR. The results showed that the miRNAs in soybean respond to P. sojae infection. MiRNAs can be transcribed independently, suggesting the presence of transcription factor binding sites in the promoter regions. Additionally, we performed an evolutionary analysis on conserved miRNAs that respond to P. sojae. Finally, we investigated the regulatory relationships among miRNAs, genes, and transcription factors, and identified five regulatory patterns. These findings lay the groundwork for future studies on the evolution of miRNAs responsive to P. sojae.


Subject(s)
MicroRNAs , Phytophthora , MicroRNAs/genetics , MicroRNAs/metabolism , Glycine max/genetics , Glycine max/metabolism , Phytophthora/genetics , Computational Biology , Sequence Analysis, RNA , Plant Diseases/genetics , Disease Resistance/genetics
16.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175456

ABSTRACT

Soybean is a cereal crop with high protein and oil content which serves as the main source of plant-based protein and oil for human consumption. The symbiotic relationship between legumes and rhizobia contributes significantly to soybean yield and quality, but the underlying molecular mechanisms remain poorly understood, hindering efforts to improve soybean productivity. In this study, we conducted a transcriptome analysis and identified 22 differentially expressed genes (DEGs) from nodule-related quantitative trait loci (QTL) located in chromosomes 12 and 19. Subsequently, we performed functional characterisation and haplotype analysis to identify key candidate genes among the 22 DEGs that are responsive to nitrate. Our findings identified GmTCP (TEOSINTE-BRANCHED1/CYCLOIDEA/PCF) and GmNLP (NIN-LIKE PROTEIN) as the key candidate genes that regulate the soybean nodule phenotype in response to nitrogen concentration. We conducted homologous gene mutant analysis in Arabidopsis thaliana, which revealed that the homologous genes of GmTCP and GmNLP play a vital role in regulating root development in response to nitrogen concentration. We further performed overexpression and gene knockout of GmTCP and GmNLP through hairy root transformation in soybeans and analysed the effects of GmTCP and GmNLP on nodulation under different nitrogen concentrations using transgenic lines. Overexpressing GmTCP and GmNLP resulted in significant differences in soybean hairy root nodulation phenotypes, such as nodule number (NN) and nodule dry weight (NDW), under varying nitrate conditions. Our results demonstrate that GmTCP and GmNLP are involved in regulating soybean nodulation in response to nitrogen concentration, providing new insights into the mechanism of soybean symbiosis establishment underlying different nitrogen concentrations.


Subject(s)
Arabidopsis , Plant Root Nodulation , Humans , Plant Root Nodulation/genetics , Glycine max/metabolism , Nitrates/metabolism , Nitrogen/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Symbiosis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant
19.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902050

ABSTRACT

Soybeans (Glycine max) are a key food crop, serving as a valuable source of both oil and plant-derived protein. Pseudomonas syringae pv. glycinea (Psg) is among the most aggressive and prevalent pathogens affecting soybean production, causing a form of bacterial spot disease that impacts soybean leaves and thereby reduces crop yields. In this study, 310 natural soybean varieties were screened for Psg resistance and susceptibility. The identified susceptible and resistant varieties were then used for linkage mapping, BSA-seq, and whole genome sequencing (WGS) analyses aimed at identifying key QTLs associated with Psg responses. Candidate Psg-related genes were further confirmed through WGS and qPCR analyses. Candidate gene haplotype analyses were used to explore the associations between haplotypes and soybean Psg resistance. In addition, landrace and wild soybean plants were found to exhibit a higher degree of Psg resistance as compared to cultivated soybean varieties. In total, 10 QTLs were identified using chromosome segment substitution lines derived from Suinong14 (cultivated soybean) and ZYD00006 (wild soybean). Glyma.10g230200 was found to be induced in response to Psg, with the Glyma.10g230200 haplotype corresponding to soybean disease resistance. The QTLs identified herein can be leveraged to guide the marker-assisted breeding of soybean cultivars that exhibit partial resistance to Psg. Moreover, further functional and molecular studies of Glyma.10g230200 have the potential to offer insight into the mechanistic basis for soybean Psg resistance.


Subject(s)
Glycine max , Pseudomonas syringae , Glycine max/genetics , Pseudomonas syringae/genetics , Plant Breeding , Quantitative Trait Loci , Glycine/genetics
20.
Physiol Plant ; 175(2): e13872, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36764699

ABSTRACT

Soybean is a pivotal protein and oil crop that utilizes atmospheric nitrogen via symbiosis with rhizobium soil bacteria. Rhizobial type III effectors (T3Es) are essential regulators during symbiosis establishment. However, how the transcription factors involved in the interaction between phytohormone synthesis and type III effectors are connected is unclear. To detect the responses of phytohormone and transcription factor genes to rhizobial type III effector NopAA and type III secretion system, the candidate genes underlying soybean symbiosis were identified using RNA sequencing (RNA-seq) and phytohormone content analysis of soybean roots infected with wild-type Rhizobium and its derived T3E mutant. Via RNA-seq analysis the WRKY and ERF transcription factor families were identified as the most differentially expressed factors in the T3E mutant compared with the wild-type. Next, qRT-PCR was used to confirm the candidate genes Glyma.09g282900, Glyma.08g018300, Glyma.18g238200, Glyma.03g116300, Glyma.07g246600, Glyma.16g172400 induced by S. fredii HH103, S. fredii HH103ΩNopAA, and S. fredii HH103ΩRhcN. Since the WRKY and ERF families may regulate abscisic acid (ABA) content and underlying nodule formation, we performed phytohormone content analysis at 0.5 and 24 h post-inoculation (hpi). A significant change in ABA content was found between wild Rhizobium and type III effector mutant. Our results support that NopAA can promote the establishment of symbiosis by affecting the ABA signaling pathways by regulating WRKY and ERF which regulate the phytohormone signaling pathway. Specifically, our work provides insights into a signaling interaction of prokaryotic effector-induced phytohormone response involved in host signaling that regulates the establishment of symbiosis and increases nitrogen utilization efficiency in soybean plants.


Subject(s)
Glycine max , Rhizobium , Glycine max/genetics , Plant Growth Regulators/metabolism , Transcription Factors/metabolism , Symbiosis/physiology , Plant Roots/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL