Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 530
Filter
1.
Nat Commun ; 15(1): 8624, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39366973

ABSTRACT

M1 macrophages induce protective immunity against infection, but also contribute to metabolic and inflammatory diseases. Here we show that the E3 ubiquitin ligase, MDM2, promotes the glycolytic and inflammatory activities of M1 macrophage by increasing the production of IL-1ß, MCP-1 and nitric oxide (NO). Mechanistically, MDM2 triggers the ubiquitination and degradation of E3 ligase, SPSB2, to stabilize iNOS and increases production of NO, which s-nitrosylates and activates HIF-1α for triggering the glycolytic and pro-inflammatory programs in M1 macrophages. Myeloid-specific haplodeletion of MDM2 in mice not only blunts LPS-induced endotoxemia and NO production, but also alleviates obesity-induced adipose tissue-resident macrophage inflammation. By contrast, MDM2 haplodeletion induces higher mortality, tissue damage and bacterial burden, and also suppresses M1 macrophage response, in the cecal ligation and puncture-induced sepsis mouse model. Our findings thus identify MDM2 as an activator of glycolytic and inflammatory responses in M1 macrophages by connecting the iNOS-NO and HIF-1α pathways.


Subject(s)
Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Inflammation , Macrophages , Nitric Oxide Synthase Type II , Nitric Oxide , Proto-Oncogene Proteins c-mdm2 , Animals , Nitric Oxide Synthase Type II/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Nitric Oxide/metabolism , Macrophages/metabolism , Macrophages/immunology , Mice , Inflammation/metabolism , Inflammation/immunology , Proto-Oncogene Proteins c-mdm2/metabolism , Mice, Inbred C57BL , Endotoxemia/metabolism , Endotoxemia/immunology , Signal Transduction , Male , Lipopolysaccharides , Ubiquitination , Sepsis/immunology , Sepsis/metabolism , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
2.
Br J Psychiatry ; : 1-9, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39387221

ABSTRACT

BACKGROUND: Understanding how childhood psychosocial adjustment (CPA) influences later life health outcomes is crucial for developing interventions to mitigate the long-term risk of cardiometabolic diseases (CMDs). AIMS: To investigate the association between CPA and incident CMDs in mid-life, and the mediating roles of educational attainment, smoking habits and depression during young adulthood. METHOD: A prospective cohort study utilised data from the 1958 National Child Development Study (NCDS; 1958-2013) and the 1970 British Cohort Study (BCS70; 1970-2018), encompassing 22 012 participants assessed for CPA in childhood, who were subsequently evaluated for educational attainment, smoking habits and depression in young adulthood, followed by assessments for CMDs in mid-life. CPA was assessed using the Bristol Social Adjustment Guides in the NCDS and the Rutter Child Behaviour Scale in the BCS70, with higher scores indicating poorer psychosocial adjustment. The primary outcomes were the mid-life incidences of hypertension, diabetes and obesity. RESULTS: Compared with children in the lowest tertile for CPA scores, those in the middle tertile had an adjusted odds ratio for hypertension of 0.98 (95% CI 0.90-1.06), whereas those in the highest tertile had an odds ratio of 1.17 (95% CI 1.08-1.26). For diabetes, the corresponding odds ratios (95% CI) were 1.15 (0.98-1.35) and 1.39 (1.19-1.62). For obesity, the corresponding odds ratios (95% CI) were 1.08 (1.00-1.16) and 1.18 (1.09-1.27). These associations were partially mediated by educational attainment (2.4-13.9%) and depression during young adulthood (2.5-14.9%). CONCLUSIONS: Poorer CPA is correlated with the development of hypertension, diabetes and obesity in mid-life. Interventions aimed at improving CPA may help in reducing the burden of these diseases in later life.

3.
Microb Pathog ; : 107014, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39396689

ABSTRACT

Mycobacterium tuberculosis (Mtb), the main pathogen responsible for the high mortality and morbidity of tuberculosis (TB) worldwide, primarily targets and invades macrophages. Infected macrophages activate a series of immune mechanisms to clear Mtb, however, Mtb evades host immune surveillance through subtle immune escape strategies to create a microenvironment conducive to its own proliferation, growth, and dissemination, while inducing immune cell death. The course of TB is strongly correlated with the form of cell death, including apoptosis, pyroptosis, and necrosis. Recent studies have revealed that ferroptosis, a novel type of programmed cell death characterized by iron-dependent lipid peroxidation, is closely linked to the regulatory mechanisms of TB. The central role of ferroptosis in the pathologic process of TB is increasingly becoming a focal point for exploring new therapeutic targets in this field. This paper will delve into the dynamic game between Mtb and host immune cells, especially the role of ferroptosis in the pathogenesis of TB. At the same time, this paper will analyze the regulatory pathways of ferroptosis and provide unique insights and innovative perspectives for TB therapeutic strategies based on the ferroptosis mechanism. This study not only expands the theoretical basis of TB treatment, but also points out the direction of future drug development, providing new possibilities for overcoming this global health problem.

4.
Circulation ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315433

ABSTRACT

BACKGROUND: BMP9 (bone morphogenetic protein 9) is a member of the TGF-ß (transforming growth factor ß) family of cytokines with pleiotropic effects on glucose metabolism, fibrosis, and lymphatic development. However, the role of BMP9 in myocardial infarction (MI) remains elusive. METHODS: The expressional profiles of BMP9 in cardiac tissues and plasma samples of subjects with MI were determined by immunoassay or immunoblot. The role of BMP9 in MI was determined by evaluating the impact of BMP9 deficiency and replenishment with adeno-associated virus-mediated BMP9 expression or recombinant human BMP9 protein in mice. RESULTS: We show that circulating BMP9 and its cardiac levels are markedly increased in humans and mice with MI and are negatively associated with cardiac function. It is important to note that BMP9 deficiency exacerbates left ventricular dysfunction, increases infarct size, and augments cardiac fibrosis in mice with MI. In contrast, replenishment of BMP9 significantly attenuates these adverse effects. We further demonstrate that BMP9 improves lymphatic drainage function, thereby leading to a decrease of cardiac edema. In addition, BMP9 increases the expression of mitochondrial DECR1 (2,4-dienoyl-CoA reductase 1), a rate-limiting enzyme involved in ß-oxidation, which, in turn, promotes cardiac mitochondrial bioenergetics and mitigates MI-induced cardiomyocyte injury. Moreover, DECR1 deficiency exacerbates MI-induced cardiac damage in mice, whereas this adverse effect is restored by the treatment of adeno-associated virus-mediated DECR1. Consistently, DECR1 deletion abrogates the beneficial effect of BMP9 against MI-induced cardiomyopathy and cardiac damage in mice. CONCLUSIONS: These results suggest that BMP9 protects against MI by fine-tuning the multiorgan cross-talk among the liver, lymph, and the heart.

5.
Medicine (Baltimore) ; 103(37): e38746, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39287231

ABSTRACT

BACKGROUND: To explore the abnormal metabolism-related genes that affect the prognosis of patients with lung adenocarcinoma (LUAD), and analyze the relationship with immune infiltration and competing endogenous RNA (ceRNA) network. METHODS: Transcriptome data of LUAD were downloaded from the Cancer Genome Atlas database. Abnormal metabolism-related differentially expressed genes in LUAD were screened by the R language. Cox analysis was used to construct LUAD prognostic risk model. Kaplan-Meier test, ROC curve and nomograms were used to evaluate the predictive ability of metabolic related gene prognostic model. CIBERSORT algorithm was used to analyze the relationship between risk score and immune infiltration. The starBase database constructed a regulatory network consistent with the ceRNA hypothesis. IHC experiments were performed to verify the differential expression of ALG3 in LUAD and paracancerous samples. RESULTS: In this study, 42 abnormal metabolism-related differential genes were screened. After survival analysis, the final 5 metabolism-related genes were used as the construction of prognosis model, including ALG3, COL7A1, KL, MST1, and SLC52A1. In the model, the survival rate of LUAD patients in the high-risk subgroup was lower than that in the low-risk group. In addition, the risk score of the constructed LUAD prognostic model can be used as an independent prognostic factor for patients. According to the analysis of CIBERSORT algorithm, the risk score is related to the infiltration of multiple immune cells. The potential ceRNA network of model genes in LUAD was constructed through the starBase database. IHC experiments revealed that ALG3 expression was upregulated in LUAD. CONCLUSION: The prognostic model of LUAD reveals the relationship between metabolism and prognosis of LUAD, and provides a novel perspective for diagnosis and research of LUAD.


Subject(s)
Adenocarcinoma of Lung , Biomarkers, Tumor , Lung Neoplasms , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Adenocarcinoma of Lung/metabolism , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/metabolism , Lung Neoplasms/diagnosis , Male , Nomograms , Female , Gene Expression Regulation, Neoplastic , Kaplan-Meier Estimate , Middle Aged , Transcriptome , ROC Curve
6.
Medicine (Baltimore) ; 103(37): e39639, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39287291

ABSTRACT

BACKGROUND: Construction of a prognostic model for esophageal cancer (ESCA) based on prognostic RNA-binding proteins (RBPs) and preliminary evaluation of RBP function. METHODS: RNA-seq data of ESCA was downloaded from The Cancer Genome Atlas database and mRNA was extracted to screen differentially expressed genes using R. After screening RBPs in differentially expressed genes, R packages clusterProfiler and pathview were used to analyze the RBPs for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway. Based on the prognosis-related RBPs, COX regression was used to establish the prognostic risk model of ESCA. Risk model predictive ability was assessed using calibration analysis, receiver operating characteristic curves, Kaplan-Meier curves, decision curve analysis, and Harrell consistency index (C-index). A nomogram was established by combining the risk model with clinicopathological features. RESULTS: A total of 105 RBPs were screened from ESCA. A prognostic risk model consisting of 6 prognostic RBPs (ARHGEF28, BOLL, CIRBP, DKC1, SNRPB, and TRIT1) was constructed by COX regression analysis. The prognosis was worse in the high-risk group, and the receiver operating characteristic curve showed (area under the curve = 0.90) that the model better predicted patients' 5-year survival. In addition, 6 prognostic RBPs had good diagnostic power for ESCA. In addition, a total of 39 mRNAs were identified as predicted target molecules for DKC1. CONCLUSION: ARHGEF28, BOLL, CIRBP, DKC1, SNRPB, and TRIT1, as RBPs, are associated with the prognosis of ESCA, which may provide new ideas for targeted therapy of ESCA.


Subject(s)
Esophageal Neoplasms , Nomograms , RNA-Binding Proteins , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , RNA-Binding Proteins/genetics , Prognosis , Male , Female , Biomarkers, Tumor/genetics , Middle Aged , ROC Curve , Kaplan-Meier Estimate , Aged , Proportional Hazards Models
7.
Diabetol Metab Syndr ; 16(1): 226, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267148

ABSTRACT

BACKGROUND: It is uncertain whether the weekend warrior pattern is associated with all-cause mortality among adults living with type 2 diabetes. This study explored how the 'weekend warrior' physical activity (PA) pattern was associated with all-cause mortality among adults living with type 2 diabetes. METHODS: This prospective cohort study investigated US adults living with type 2 diabetes in the National Health and Nutrition Examination Survey (NHANES). Mortality data was linked to the National Death Index. Based on self-reported leisure-time and occupational moderate-to-vigorous PA (MVPA), participants were categorized into 3 groups: physically inactive (< 150 min/week of MVPA), weekend warrior (≥ 150 min/week of MVPA in 1 or 2 sessions), and physically active (≥ 150 min/week of MVPA in 3 or more sessions). RESULTS: A total of 6067 participants living with type 2 diabetes [mean (SD) age, 61.4 (13.5) years; 48.0% females] were followed for a median of 6.1 years, during which 1206 deaths were recorded. Of leisure-time and occupational activity, compared with inactive individuals, hazard ratios (HRs) for all-cause mortality were 0.49 (95% CI 0.26-0.91) and 0.57 (95% CI 0.38-0.85) for weekend warrior individuals, and 0.55 (95% CI 0.45-0.67) and 0.64 (95% CI 0.53-0.76) for regularly active individuals, respectively. However, when compared leisure-time and occupational weekend warrior with regularly active participants, the HRs were 0.82 (95% CI 0.42-1.61) and 1.00 (95% CI 0.64-1.56) for all-cause mortality, respectively. CONCLUSIONS: Weekend warrior PA pattern may have similar effects on lowering all-cause mortality as regularly active pattern among adults living with type 2 diabetes, regardless of leisure-time or occupational activity. Therefore, weekend warrior PA pattern may be sufficient to reduce all-cause mortality for adults living with type 2 diabetes.

8.
Int J Immunopathol Pharmacol ; 38: 3946320241272550, 2024.
Article in English | MEDLINE | ID: mdl-39101927

ABSTRACT

OBJECTIVE: To explore the effect of miR-370-3p on LPS triggering, in particular its involvement in disease progression by targeting the TLR4-NLRP3-caspase-1 cellular pyroptosis pathway in macrophages. METHODS: Human macrophage RAW264.7 was divided into 6 groups: control, LPS, LPS + inhibitor-NC, LPS + miR-370-3p inhibitor, LPS + mimics-NC and LPS + miR-370-3p mimics. RT-qPCR was used to detect the expression level of miR-370-3p and analyzed comparatively. CCK-8 and flow cytometry assays were used to detect cell viability and apoptosis. ELISA assay was used to detect the levels of IL-1ß and TNF-α in the supernatant of the cells. The WB assay was used to detect TLR4, NLRP3, Caspase-1 and GSDMD levels. RESULTS: After LPS induction, macrophage miR-370-3p levels decreased, cell viability decreased, and apoptosis increased. At the same time, the levels of TLR4, NLRP3, Caspase-1 and GSDMD increased in the cells, and the levels of IL-1ß and TNF-α increased in the cell supernatant. Compared with the LPS group, the significantly higher expression level of miR-370-3p in the cells of the LPS + miR-370-3p mimics group was accompanied by significantly higher cell viability, significantly lower apoptosis rate, significantly lower levels of TLR4, NLRP3, Caspase-1, and GSDMD in the cells, and significantly lower levels of IL-1ß and TNF-α in the cell supernatant. CONCLUSION: MiR-370-3p may be involved in anti-infective immune responses by targeting and inhibiting the macrophage TLR4-NLRP3-caspase-1 cellular pyroptosis pathway.


Subject(s)
Caspase 1 , Lipopolysaccharides , Macrophages , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Toll-Like Receptor 4 , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Humans , Caspase 1/metabolism , Caspase 1/genetics , Mice , RAW 264.7 Cells , Animals , Signal Transduction , Interleukin-1beta/metabolism , Cell Survival/drug effects , Bacterial Infections/immunology
9.
EBioMedicine ; 106: 105261, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39079340

ABSTRACT

BACKGROUND: Green space is an important part of the human living environment, with many epidemiological studies estimating its impact on human health. However, no study has quantitatively assessed the credibility of the existing evidence, impeding their translations into policy decisions and hindering researchers from identifying new research gaps. This overview aims to evaluate and rank such evidence credibility. METHODS: Following the PRISMA guideline, we systematically searched PubMed, Web of Science, and Embase databases for systematic reviews with meta-analyses concerning green spaces and health outcomes published up to January 15, 2024. We categorized the credibility of meta-analytical evidence from interventional studies into four levels (i.e., high, moderate, low, and very low) using the Grading of Recommendation, Assessment, Development and Evaluations framework, based on five domains including risk of bias, inconsistency, indirectness, imprecision, and publication bias. Further, we recalculated all the meta-analyses from observational studies and classified evidence into five levels (i.e., convincing, highly suggestive, suggestive, weak, and non-significant) by considering stringent thresholds for P-values, sample size, robustness, heterogeneity, and testing for biases. FINDINGS: In total, 154 meta-analysed associations (interventional = 44, observational = 110) between green spaces and health outcomes were graded. Among meta-analyses from interventional studies, zero, four (wellbeing, systolic blood pressure, negative affect, and positive affect), 20, and 20 associations between green spaces and health outcomes were graded as high, moderate, low, and very low credibility evidence, respectively. Among meta-analyses from observational studies, one (cardiovascular disease mortality), four (prevalence/incidence of diabetes mellitus, preterm birth, and small for gestational age infant, and all-cause mortality), 12, 22, and 71 associations were categorized as convincing, highly suggestive, suggestive, weak, and non-significant evidence, respectively. INTERPRETATION: The current evidence largely confirms beneficial associations between green spaces and human health. However, only a small subset of these associations can be deemed to have a high or convincing credibility. Hence, future better designed primary studies and meta-analyses are still needed to provide higher quality evidence for informing health promotion strategies. FUNDING: The National Natural Science Foundation of China of China; the Guangzhou Science and Technology Program; the Guangdong Medical Science and Technology Research Fund; the Research Grant Council of the Hong Kong SAR; and Sino-German mobility program.


Subject(s)
Parks, Recreational , Humans , Meta-Analysis as Topic
11.
Clin Transl Sci ; 17(6): e13760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847320

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the severe form of non-alcoholic fatty liver disease which has a high potential to progress to cirrhosis and hepatocellular carcinoma, yet adequate effective therapies are lacking. Hypoadiponectinemia is causally involved in the pathogenesis of MASH. This study investigated the pharmacological effects of adiponectin replacement therapy with the adiponectin-derived peptide ALY688 (ALY688-SR) in a mouse model of MASH. Human induced pluripotent stem (iPS) cell-derived hepatocytes were used to test cytotoxicity and signaling of unmodified ALY688 in vitro. High-fat diet with low methionine and no added choline (CDAHF) was used to induce MASH and test the effects of ALY688-SR in vivo. Histological MASH activity score (NAS) and fibrosis score were determined to assess the effect of ALY688-SR. Transcriptional characterization of mice through RNA sequencing was performed to indicate potential molecular mechanisms involved. In cultured hepatocytes, ALY688 efficiently induced adiponectin-like signaling, including the AMP-activated protein kinase and p38 mitogen-activated protein kinase pathways, and did not elicit cytotoxicity. Administration of ALY688-SR in mice did not influence body weight but significantly ameliorated CDAHF-induced hepatic steatosis, inflammation, and fibrosis, therefore effectively preventing the development and progression of MASH. Mechanistically, ALY688-SR treatment markedly induced hepatic expression of genes involved in fatty acid oxidation, whereas it significantly suppressed the expression of pro-inflammatory and pro-fibrotic genes as demonstrated by transcriptomic analysis. ALY688-SR may represent an effective approach in MASH treatment. Its mode of action involves inhibition of hepatic steatosis, inflammation, and fibrosis, possibly via canonical adiponectin-mediated signaling.


Subject(s)
Adiponectin , Disease Models, Animal , Hepatocytes , Non-alcoholic Fatty Liver Disease , Animals , Adiponectin/metabolism , Adiponectin/pharmacology , Adiponectin/deficiency , Mice , Humans , Hepatocytes/metabolism , Hepatocytes/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Diet, High-Fat/adverse effects , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/pathology , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Metabolic Diseases/prevention & control , Metabolic Diseases/etiology , Liver/metabolism , Liver/drug effects , Liver/pathology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/pathology
13.
Cell Metab ; 36(6): 1269-1286.e9, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838640

ABSTRACT

Patients with metabolic dysfunction-associated steatotic liver disease (MASLD), especially advanced metabolic dysfunction-associated steatohepatitis (MASH), have an increased risk of cardiovascular diseases (CVDs). Whether CVD events will, in turn, influence the pathogenesis of MASLD remains unknown. Here, we show that myocardial infarction (MI) accelerates hepatic pathological progression of MASLD. Patients with MASLD who experience CVD events after their diagnosis exhibit accelerated liver fibrosis progression. MI promotes hepatic fibrosis in mice with MASH, accompanied by elevated circulating Ly6Chi monocytes and their recruitment to damaged liver tissues. These adverse effects are significantly abrogated when deleting these cells. Meanwhile, MI substantially increases circulating and cardiac periostin levels, which act on hepatocytes and stellate cells to promote hepatic lipid accumulation and fibrosis, finally exacerbating hepatic pathological progression of MASH. These preclinical and clinical results demonstrate that MI alters systemic homeostasis and upregulates pro-fibrotic factor production, triggering cross-disease communication that accelerates hepatic pathological progression of MASLD.


Subject(s)
Disease Progression , Mice, Inbred C57BL , Myocardial Infarction , Animals , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Humans , Mice , Male , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Monocytes/metabolism , Female , Middle Aged , Inflammation/pathology , Inflammation/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , Liver/metabolism , Cell Adhesion Molecules/metabolism
14.
Adv Sci (Weinh) ; 11(30): e2308461, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38884133

ABSTRACT

Type 1 diabetes (T1D) is a chronic disease characterized by self-destruction of insulin-producing pancreatic ß cells by cytotoxic T cell activity. However, the pathogenic mechanism of T cell infiltration remains obscure. Recently, tissue-resident memory T (TRM) cells have been shown to contribute to cytotoxic T cell recruitment. TRM cells are found present in human pancreas and are suggested to modulate immune homeostasis. Here, the role of TRM cells in the development of T1D is investigated. The presence of TRM cells in pancreatic islets is observed in non-obese diabetic (NOD) mice before T1D onset. Mechanistically, elevated fatty acid-binding protein 4 (FABP4) potentiates the survival and alarming function of TRM cells by promoting fatty acid utilization and C-X-C motif chemokine 10 (CXCL10) secretion, respectively. In NOD mice, genetic deletion of FABP4 or depletion of TRM cells using CD69 neutralizing antibodies resulted in a similar reduction of pancreatic cytotoxic T cell recruitment, a delay in diabetic incidence, and a suppression of CXCL10 production. Thus, targeting FABP4 may represent a promising therapeutic strategy for T1D.


Subject(s)
Chemokine CXCL10 , Diabetes Mellitus, Type 1 , Fatty Acid-Binding Proteins , Islets of Langerhans , Mice, Inbred NOD , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/genetics , Animals , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/immunology , Mice , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Chemokine CXCL10/immunology , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Memory T Cells/immunology , Memory T Cells/metabolism , Disease Models, Animal , Humans
15.
Materials (Basel) ; 17(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38793362

ABSTRACT

High-strength steel (HSS) members with welded sections exhibit a notably lower residual compressive stress ratio compared with common mild steel (CMS) members. Despite this difference, current codes often generalize the findings from CMS members to HSS members, and the previous unified residual stress models are generally conservative. This study focuses on the membrane residual stress distribution in Q690 steel welded box sections. By leveraging experimental results, the influence of section sizes and welding parameters on membrane residual stress was delved into. A larger plate size correlates with a decrease in the residual compressive stress across the section, with a more pronounced reduction observed in adjacent plates. Additionally, augmenting the number of welding passes tends to diminish residual stresses across the section. Results showed that membrane residual stress adhered to the section's self-equilibrium, while the self-equilibrium in the plates was not a uniform pattern. A reliable residual stress simulation method for Q690 steel welded box sections was established using a three-dimensional thermal-elastic-plastic finite element model (3DTEFEM) grounded in experimental data. This method served as the cornerstone for parameter analysis in this study and set the stage for subsequent research. As a result, an accurate unified residual stress model for Q690 steel welded box sections was derived.

16.
Research (Wash D C) ; 7: 0382, 2024.
Article in English | MEDLINE | ID: mdl-38812532

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of metabolic dysfunction-associated steatotic liver disease (MASLD), and closely associated with a high risk of liver-related morbidity and mortality. Although enhanced neutrophil infiltration of the liver is a histological hallmark of MASH, the morphological pattern of hepatic neutrophils and their relevance to the definition of MASH remain unknown. This clinicopathological study aimed to determine the association of neutrophilic crown-like structures (CLSs) in liver biopsies and evaluate their relevance to the histological diagnosis of MASH. A total of 483 morbidly obese adults who underwent bariatric surgery were recruited. Neutrophilic CLSs in liver biopsies were detected by immunohistochemistry for neutrophil elastase and proteinase 3. All participants were classified into 4 histological subgroups: no MASLD (118, 24.4%), MASLD (76, 15.7%), borderline MASH (185, 38.3%), and definite MASH (104, 21.5%). In the discovery cohort (n = 379), the frequency of neutrophilic CLSs increased in line with the severity of liver disease. The number of neutrophilic CLSs was positively correlated with established histological characteristics of MASH. At a cutoff value of <0.3 per 20× microscopic field, the number of neutrophilic CLSs yielded a robust diagnostic accuracy to discriminate no MASLD and MASLD from borderline MASH and definite MASH; a cutoff at >1.3 per 20× microscopic field exhibited a statistically significant accuracy to distinguish definite MASH from other groups (no MASLD, MASLD, and borderline MASH). The significance of neutrophilic CLSs in identifying borderline MASH and definite MASH was confirmed in an external validation cohort (n = 104). The frequency of neutrophilic CLSs was significantly higher than that of macrophagic CLSs. In conclusion, neutrophilic CLSs in the liver represent a typical histological characteristic of MASH and may serve as a promising indicator to improve the diagnostic accuracy of MASH during histological assessment of liver biopsies.

17.
BMC Public Health ; 24(1): 1323, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755574

ABSTRACT

BACKGROUND: Irregular sleep patterns have been associated with inflammation. Galectin-3, a novel biomarker, plays an important role in inflammation. We investigated the relationship between sleep patterns and galectin-3 in a Chinese population. METHODS: A total of 1,058 participants from the Shenzhen-Hong Kong United Network on Cardiovascular Disease study were included in the analysis. Age and sex-adjusted linear regression models were employed to investigate the relationship between galectin-3 level and traditional metabolic biomarkers. Logistic regression models were used to estimate the association among sleep disturbance, nighttime sleep duration, and daytime napping duration and elevated galectin-3, with elevated galectin-3 defined as galectin-3 level > 65.1 ng/ml. RESULTS: Of study participants, the mean age was 45.3 years and 54.3% were women. Waist circumference, natural logarithm (ln)-transformed triglyceride, and ln-transformed high sensitivity C-reactive protein were positively associated with galectin-3 level (age and sex-adjusted standardized ß [95% confidence interval (CI)], 0.12 [0.04, 0.21], 0.11 [0.05, 0.17], and 0.08 [0.02, 0.14], respectively). Sleep disturbance was associated with elevated galectin-3 (odds ratio [95% CI], 1.68 [1.05, 2.68], compared to those without sleep disturbance) after adjusting for traditional metabolic biomarkers. No interaction was observed between galectin-3 and age, sex, obesity, hypertension, and diabetes on sleep disturbance. No association was found between nighttime sleep duration or daytime napping duration and elevated galectin-3. CONCLUSIONS: Our study provides evidence of a significant association between sleep disturbance and elevated galectin-3 level, independent of traditional metabolic biomarkers. Screening and interventions on galectin-3 could assist in preventing sleep disturbance-induced inflammatory disease.


Subject(s)
Biomarkers , Galectin 3 , Sleep Wake Disorders , Sleep , Adult , Female , Humans , Male , Middle Aged , Biomarkers/blood , China/epidemiology , East Asian People , Galectin 3/blood , Hong Kong/epidemiology , Sleep/physiology , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/blood
18.
Sci Adv ; 10(16): eadl1856, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640241

ABSTRACT

Continuous glucose monitoring systems (CGMs) are critical toward closed-loop diabetes management. The field's progress urges next-generation CGMs with enhanced antinoise ability, reliability, and wearability. Here, we propose a coin-sized, fully integrated, and wearable CGM, achieved by holistically synergizing state-of-the-art interdisciplinary technologies of biosensors, minimally invasive tools, and hydrogels. The proposed CGM consists of three major parts: (i) an emerging biochemical signal amplifier, the organic electrochemical transistor (OECT), improving the signal-to-noise ratio (SNR) beyond traditional electrochemical sensors; (ii) a microneedle array to facilitate subcutaneous glucose sampling with minimized pain; and (iii) a soft hydrogel to stabilize the skin-device interface. Compared to conventional CGMs, the OECT-CGM offers a high antinoise ability, tunable sensitivity and resolution, and comfort wearability, enabling personalized glucose sensing for future precision diabetes health care. Last, we discuss how OECT technology can help push the limit of detection of current wearable electrochemical biosensors, especially when operating in complicated conditions.


Subject(s)
Biosensing Techniques , Diabetes Mellitus , Humans , Blood Glucose Self-Monitoring , Blood Glucose , Continuous Glucose Monitoring , Reproducibility of Results , Glucose , Diabetes Mellitus/diagnosis
19.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
20.
Burns Trauma ; 12: tkad055, 2024.
Article in English | MEDLINE | ID: mdl-38601971

ABSTRACT

Background: Prevention of diabetic heart myocardial ischemia-reperfusion (IR) injury (MIRI) is challenging. Propofol attenuates MIRI through its reactive oxygen species scavenging property at high doses, while its use at high doses causes hemodynamic instability. Salvianolic acid A (SAA) is a potent antioxidant that confers protection against MIRI. Both propofol and SAA affect metabolic profiles through regulating Adenosine 5'-monophosphate-activated protein kinase (AMPK). The aim of this study was to investigate the protective effects and underlying mechanisms of low doses of propofol combined with SAA against diabetic MIRI. Methods: Diabetes was induced in mice by a high-fat diet followed by streptozotocin injection, and MIRI was induced by coronary artery occlusion and reperfusion. Mice were treated with propofol at 46 mg/kg/h without or with SAA at 10 mg/kg/h during IR. Cardiac origin H9c2 cells were exposed to high glucose (HG) and palmitic acid (PAL) for 24 h in the absence or presence of cluster of differentiation 36 (CD36) overexpression or AMPK gene knockdown, followed by hypoxia/reoxygenation (HR) for 6 and 12 h. Results: Diabetes-exacerbated MIRI is evidenced as significant increases in post-ischemic infarction with reductions in phosphorylated (p)-AMPK and increases in CD36 and ferroptosis. Propofol moderately yet significantly attenuated all the abovementioned changes, while propofol plus SAA conferred superior protection against MIRI to that of propofol. In vitro, exposure of H9c2 cells under HG and PAL decreased cell viability and increased oxidative stress that was concomitant with increased levels of ferroptosis and a significant increase in CD36, while p-AMPK was significantly reduced. Co-administration of low concentrations of propofol and SAA at 12.5 µM in H9c2 cells significantly reduced oxidative stress, ferroptosis and CD36 expression, while increasing p-AMPK compared to the effects of propofol at 25 µM. Moreover, either CD36 overexpression or AMPK silence significantly exacerbated HR-induced cellular injuries and ferroptosis, and canceled propofol- and SAA-mediated protection. Notably, p-AMPK expression was downregulated after CD36 overexpression, while AMPK knockdown did not affect CD36 expression. Conclusions: Combinational usage of propofol and SAA confers superior cellular protective effects to the use of high-dose propofol alone, and it does so through inhibiting HR-induced CD36 overexpression to upregulate p-AMPK.

SELECTION OF CITATIONS
SEARCH DETAIL