Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters








Publication year range
1.
Cell Prolif ; : e13715, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982593

ABSTRACT

The bone marrow (BM) niches are the complex microenvironments that surround cells, providing various external stimuli to regulate a range of haematopoietic stem cell (HSC) behaviours. Recently, it has been proposed that the fate decision of HSCs is often correlated with significantly altered biophysical signals of BM niches. To thoroughly elucidate the effect of mechanical microenvironments on cell fates, we constructed 2D and 3D cell culture hydrogels using polyacrylamide to replicate the mechanical properties of heterogeneous sub-niches, including the inherent rigidity of marrow adipose tissue (2 kPa), perivascular tissue (8 kPa) and endosteum region (35 kPa) in BM. Our observations suggest that HSCs can respond to the mechanical heterogeneity of the BM microenvironment, exhibiting diversity in cell mechanics, haematopoietic pool maintenance and differentiated lineages. Hydrogels with higher stiffness promote the preservation of long-term repopulating HSCs (LT-HSCs), while those with lower stiffness support multi-potent progenitors (MPPs) viability in vitro. Furthermore, we established a comprehensive transcriptional profile of haematopoietic subpopulations to reflect the multipotency of haematopoietic stem and progenitor cells (HSPCs) that are modulated by niche-like stiffness. Our findings demonstrate that HSPCs exhibit completely distinct downstream differentiated preferences within hydrogel systems of varying stiffness. This highlights the crucial role of tissue-specific mechanical properties in HSC lineage decisions, which may provide innovative solutions to clinical challenges.

2.
Arthritis Res Ther ; 25(1): 146, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37559125

ABSTRACT

BACKGROUND: Tau protein serves a pro-inflammatory function in neuroinflammation. However, the role of tau in other inflammatory disorders such as rheumatoid arthritis (RA) is less explored. This study is to investigate the role of endogenous tau and the potential mechanisms in the pathogenesis of inflammatory arthritis. METHODS: We established collagen-induced arthritis (CIA) model in wild-type and Tau-/- mice to compare the clinical score and arthritis incidence. Micro-CT analysis was used to evaluate bone erosion of ankle joints. Histological analysis was performed to assess inflammatory cell infiltration, cartilage damage, and osteoclast activity in the ankle joints. Serum levels of pro-inflammatory cytokines were measured by ELISA. The expression levels of macrophage markers were determined by immunohistochemistry staining and quantitative real-time PCR. RESULTS: Tau expression was upregulated in joints under inflammatory condition. Tau deletion in mice exhibited milder inflammation and protected against the progression of CIA, evidenced by reduced serum levels of pro-inflammatory cytokines and attenuated bone loss, inflammatory cell infiltration, cartilage damage, and osteoclast activity in the ankle joints. Furthermore, tau deficiency led to the inhibition of classically activated type 1 (M1) macrophage polarization in the synovium. CONCLUSION: Tau is a previously unrecognized critical regulator in the pathogenesis of RA and may provide a potential therapeutic target for autoimmune and inflammatory joint diseases.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , tau Proteins/adverse effects , tau Proteins/metabolism , Macrophages/metabolism , Arthritis, Rheumatoid/drug therapy , Cytokines/metabolism
3.
Front Cell Dev Biol ; 11: 1151838, 2023.
Article in English | MEDLINE | ID: mdl-37123401

ABSTRACT

Bone adapts to changes in the physical environment by modulating remodeling through bone resorption and formation to maintain optimal bone mass. As the most abundant connexin subtype in bone tissue, connexin 43 (Cx43)-forming hemichannels are highly responsive to mechanical stimulation by permitting the exchange of small molecules (<1.2 kDa) between bone cells and the extracellular environment. Upon mechanical stimulation, Cx43 hemichannels facilitate the release of prostaglandins E2 (PGE2), a vital bone anabolic factor from osteocytes. Although most bone cells are involved in mechanosensing, osteocytes are the principal mechanosensitive cells, and PGE2 biosynthesis is greatly enhanced by mechanical stimulation. Mechanical stimulation-induced PGE2 released from osteocytic Cx43 hemichannels acts as autocrine effects that promote ß-catenin nuclear accumulation, Cx43 expression, gap junction function, and protects osteocytes against glucocorticoid-induced osteoporosis in cultured osteocytes. In vivo, Cx43 hemichannels with PGE2 release promote bone formation and anabolism in response to mechanical loading. This review summarizes current in vitro and in vivo understanding of Cx43 hemichannels and extracellular PGE2 release, and their roles in bone function and mechanical responses. Cx43 hemichannels could be a significant potential new therapeutic target for treating bone loss and osteoporosis.

4.
ACS Biomater Sci Eng ; 9(5): 2203-2219, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37075172

ABSTRACT

Bone comprises mechanically different materials in a specific hierarchical structure. Mineralized collagen fibrils (MCFs), represented by tropocollagen molecules and hydroxyapatite nanocrystals, are the fundamental unit of bone. The mechanical characterization of MCFs provides the unique adaptive mechanical competence to bone to withstand mechanical load. The structural and mechanical role of MCFs is critical in the deformation mechanisms of bone and the marvelous strength and toughness possessed by bone. However, the role of MCFs in the mechanical behavior of bone across multiple length scales is not fully understood. In the present study, we shed light upon the latest progress regarding bone deformation at multiple hierarchical levels and emphasize the role of MCFs during bone deformation. We propose the concept of hierarchical deformation of bone to describe the interconnected deformation process across multiple length scales of bone under mechanical loading. Furthermore, how the deterioration of bone caused by aging and diseases impairs the hierarchical deformation process of the cortical bone is discussed. The present work expects to provide insights on the characterization of MCFs in the mechanical properties of bone and lays the framework for the understanding of the multiscale deformation mechanics of bone.


Subject(s)
Bone and Bones , Collagen , Cortical Bone , Extracellular Matrix , Durapatite
5.
Stem Cells Dev ; 32(13-14): 379-386, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37002887

ABSTRACT

There has been an upsurge of interest in the bone marrow mesenchymal stem cell (BMSC) mitochondrial transfer as a potential therapeutic innovation in organ injury repair. Previous research mainly focused on its transfer routes and therapeutic effects. However, its intrinsic mechanism has not been well deciphered. The current research status needs to be summarized for the clarification of future research direction. Therefore, we review the recent significant progress in the application of BMSC mitochondrial transfer in organ injury repair. The transfer routes and effects are summarized, and some suggestions on the future research direction are provided.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Bone Marrow Cells/metabolism , Mesenchymal Stem Cells/metabolism , Wound Healing , Mitochondria
6.
Cytokine Growth Factor Rev ; 70: 54-66, 2023 04.
Article in English | MEDLINE | ID: mdl-36906448

ABSTRACT

Glucocorticoid (GC) is one of the most prescribed medicines to treat various inflammatory and autoimmune diseases. However, high doses and long-term use of GCs lead to multiple adverse effects, particularly glucocorticoid-induced osteoporosis (GIO). Excessive GCs exert detrimental effects on bone cells, including osteoblasts, osteoclasts, and osteocytes, leading to impaired bone formation and resorption. The actions of exogenous GCs are considered to be strongly cell-type and dose dependent. GC excess inhibits the proliferation and differentiation of osteoblasts and enhances the apoptosis of osteoblasts and osteocytes, eventually contributing to reduced bone formation. Effects of GC excess on osteoclasts mainly include enhanced osteoclastogenesis, increased lifespan and number of mature osteoclasts, and diminished osteoclast apoptosis, which result in increased bone resorption. Furthermore, GCs have an impact on the secretion of bone cells, subsequently disturbing the process of osteoblastogenesis and osteoclastogenesis. This review provides timely update and summary of recent discoveries in the field of GIO, with a particular focus on the effects of exogenous GCs on bone cells and the crosstalk among them under GC excess.


Subject(s)
Glucocorticoids , Osteoporosis , Humans , Glucocorticoids/pharmacology , Osteoclasts , Osteoporosis/chemically induced , Osteoporosis/pathology , Osteoblasts , Osteogenesis
7.
Int J Immunopathol Pharmacol ; 37: 3946320221150722, 2023.
Article in English | MEDLINE | ID: mdl-36840553

ABSTRACT

Sepsis is a common clinical critical disease with high mortality. The excessive release of cytokines from macrophages is the main cause of out-of-control immune response in sepsis. Mesenchymal stem cells (MSCs) are thought to be useful in adjunctive therapy of sepsis and related diseases, due to their function in immune regulation, anti-inflammatory, antibacterial, and tissue regeneration. Also there have been several successful cases in clinical treatment. Some previous studies have shown that MSCs regulate the function of macrophages through secreting cytokines and extracellular vesicles, or transferring mitochondria directly to target cells, which affects the progress of sepsis. Here, we review the regulation of MSCs on macrophages in sepsis, mainly focus on the regulation ways. We hope that will help to understand the immunological mechanism and also provide some clues for the clinical application of MSCs in the biotherapy of sepsis.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Sepsis , Humans , Macrophages , Cytokines , Anti-Inflammatory Agents , Sepsis/therapy
8.
Front Psychol ; 14: 1052488, 2023.
Article in English | MEDLINE | ID: mdl-36844297

ABSTRACT

With the development of various intelligent technologies, the application of interactive interfaces is becoming more and more widespread, and the related researches conducted for interactive interfaces are also increasing. The purpose of this study was to explore the influence of icon layout location, icon graphic type, and icon layout method on users' searching performance in interactive interfaces through eye-tracking technology. Participants were asked to perform search tasks for the search target (facet icon or linear icon) on each image. Thus, each trial consisted of a search task on a given image. In total, each participant had 36 trials to complete. Searching time, fixation duration, and fixation count were collected to evaluate the searching performance of participants. Results showed that when faced with familiar icons, whether the graphic type of icons was facet or linear did not affect the user's experience, but when other factors of the interaction interface changed, facet icons provided a more stable experience for users. And compared to the rectangular layout, the circular layout method provided a more stable experience for users when the location of icons in the interactive interface changed, but icons located in the top half of the interactive interface were easier to find than those located in the bottom half, regardless of whether the layout was circular or rectangular. These results could be used in the layout and icon design of the interactive interfaces to facilitate their optimization.

9.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362291

ABSTRACT

Osteoporosis and sarcopenia (termed "Osteosarcopenia"), the twin-aging diseases, are major contributors to reduced bone mass and muscle weakness in the elderly population. Connexin 43 (Cx43) in osteocytes has been previously reported to play vital roles in bone homeostasis and muscle function in mature mice. The Cx43-formed gap junctions (GJs) and hemichannels (HCs) in osteocytes are important portals for the exchange of small molecules in cell-to-cell and cell-to-extracellular matrix, respectively. However, the roles of Cx43-based GJs and HCs in both bone and muscle aging are still unclear. Here, we used two transgenic mouse models with overexpression of the dominant negative Cx43 mutants primarily in osteocytes driven by the 10-kb Dmp1 promoter, R76W mice (inhibited gap junctions but enhanced hemichannels) and Δ130-136 mice (both gap junction and hemichannels are inhibited), to determine the actions of Cx43-based hemichannels (HCs) and gap junctions (GJs) in the regulation of bone and skeletal muscle from aged mice (18 months) as compared with those from adult mice (10 months). We demonstrated that enhancement of Cx43 HCs reduces bone mass due to increased osteoclast surfaces while the impairment of Cx43 HCs increases osteocyte apoptosis in aged mice caused by reduced PGE2 levels. Furthermore, altered mitochondrial homeostasis with reduced expression of Sirt-1, OPA-1, and Drp-1 resulted in excessive ROS level in muscle soleus (SL) of aged transgenic mice. In vitro, the impairment of Cx43 HCs in osteocytes from aged mice also promoted muscle collagen synthesis through activation of TGFß/smad2/3 signaling because of reduced PGE2 levels in the PO CM. These findings indicate that the enhancement of Cx43 HCs while GJs are inhibited reduces bone mass, and the impairment of Cx43 HCs inhibits PGE2 level in osteocytes and this reduction promotes muscle collagen synthesis in skeletal muscle through activation of TGFß/smad2/3 signaling, which together with increased ROS level contributes to reduced muscle force in aged mice.


Subject(s)
Connexin 43 , Osteocytes , Animals , Male , Mice , Collagen/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Dinoprostone/metabolism , Gap Junctions/metabolism , Mice, Transgenic , Muscle, Skeletal/metabolism , Osteocytes/metabolism , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta/metabolism
10.
Front Endocrinol (Lausanne) ; 13: 962968, 2022.
Article in English | MEDLINE | ID: mdl-36225200

ABSTRACT

Irisin, out-membrane part of fibronectin type III domain-containing 5 protein (FNDC5), was activated by Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) during physical exercise in skeletal muscle tissues. Most studies have reported that the concentration of irisin is highly associated with health status. For instance, the level of irisin is significantly lower in patients with obesity, osteoporosis/fractures, muscle atrophy, Alzheimer's disease, and cardiovascular diseases (CVDs) but higher in patients with cancer. Irisin can bind to its receptor integrin αV/ß5 to induce browning of white fat, maintain glucose stability, keep bone homeostasis, and alleviate cardiac injury. However, it is unclear whether it works by directly binding to its receptors to regulate muscle regeneration, promote neurogenesis, keep liver glucose homeostasis, and inhibit cancer development. Supplementation of recombinant irisin or exercise-activated irisin might be a successful strategy to fight obesity, osteoporosis, muscle atrophy, liver injury, and CVDs in one go. Here, we summarize the publications of FNDC5/irisin from PubMed/Medline, Scopus, and Web of Science until March 2022, and we review the role of FNDC5/irisin in physiology and pathology.


Subject(s)
Fibronectins , Osteoporosis , Fibronectins/metabolism , Glucose , Humans , Integrin alphaV , Muscular Atrophy , Obesity/metabolism , PPAR gamma , Transcription Factors/metabolism
11.
Int J Mol Sci ; 23(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36233230

ABSTRACT

Bone marrow mesenchymal stem cells (BMSCs) are multi-potent cell populations and are capable of maintaining bone and body homeostasis. The stemness and potential therapeutic effect of BMSCs have been explored extensively in recent years. However, diverse cell surface antigens and complex gene expression of BMSCs have indicated that BMSCs represent heterogeneous populations, and the natural characteristics of BMSCs make it difficult to identify the specific subpopulations in pathological processes which are often obscured by bulk analysis of the total BMSCs. Meanwhile, the therapeutic effect of total BMSCs is often less effective partly due to their heterogeneity. Therefore, understanding the functional heterogeneity of the BMSC subpopulations under different physiological and pathological conditions could have major ramifications for global health. Here, we summarize the recent progress of functional heterogeneity of BMSC subpopulations in physiology and pathology. Targeting tissue-resident single BMSC subpopulation offers a potentially innovative therapeutic strategy and improves BMSC effectiveness in clinical application.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Antigens, Surface/metabolism , Bone Marrow Cells , Bone and Bones , Mesenchymal Stem Cells/metabolism
12.
Acta Biomater ; 152: 345-354, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36087867

ABSTRACT

Mineralized collagen fibrils (MCFs) are the fundamental building blocks of bone tissue and contribute significantly to the mechanical behavior of bone. However, it is still largely unknown how the collagen network in bone responds to aging and the disuse normally accompanying it. Utilizing atomic force microscopy, nanoindentation and Raman spectroscopy, age-related alterations in the microstructure and mechanical properties of murine cortical tibia at multiple scales were investigated in this study. The potential difference in the responses of bone to disuse at different ages was studied. The results indicated that the age- and disuse-related alterations in bone initiate from MCFs in the bone matrix. The D-periodic spacing, radial elastic modulus of a single MCF and the mineral-to-matrix ratio on the cortical bone surface were larger in aged mice than in adult mice. Disuse, on the other hand, mainly has a major influence on aged mice, particularly on the morphology and mechanical properties of MCFs, but it only has modest effects on adult bone. These findings revealed insights into the morphological and mechanical adaptation of mineralized collagen fibrils in murine cortical bone to aging and disuse. STATEMENT OF SIGNIFICANCE: Bone is a complex structured composite material consisting of an interwoven framework of collagen fibrils reinforced by mineral particles and embedded in an extrafibrillar mineralized matrix. Utilizing atomic force microscopy, nanoindentation and Raman spectroscopy, this study suggests that the effects of aging, as well as the accompanying disuse, on the morphology and mechanical properties of bone initiate from the mineralized collagen fibril level. More interestingly, the MCF in the bone of aged mice seems to be more sensitive to disuse than that in adult mice. These findings significantly further the current understanding of the adaptation process of bone to aging at the mineralized collagen fibril level and provide direct insights into the physiological response of bone to aging and the abnormal mechanical environment.


Subject(s)
Collagen , Cortical Bone , Aging , Animals , Bone and Bones , Collagen/chemistry , Mice , Minerals
13.
FEBS J ; 289(21): 6643-6658, 2022 11.
Article in English | MEDLINE | ID: mdl-35997219

ABSTRACT

Dampened peripheral clocks have been linked to osteoarthritis (OA), yet it is unclear whether drugging the clock can ameliorate OA. Given that RORs and REV-ERBs mediate respectively, positive and negative transcriptional feedback of the master clock gene BMAL1, we investigate whether RORs agonist Nobiletin (NOB) and SR1078, and REV-ERBs antagonist SR8278 can enhance BMAL1 expression and attenuate cartilage degeneration. NOB and SR8278 promoted BMAL1 expression and elicited mitigating effects against IL-1ß-induced degeneration of cartilage explants, as evidenced by increased cellular density and collagen synthesis along with alleviated catabolism and collagen denaturation. Despite promoted BMAL1 expression, SR1078 concomitantly suppressed chondrocyte anabolism and catabolism. Consistent with these findings, NOB and SR8278 treatment, but not SR1078, effectively attenuated structural destruction of articular cartilage in surgery-induced OA mouse models. Notably, the beneficial effects of NOB and SR8278 were evidently observed in IL-1ß-induced degeneration of human cartilage explants and immortalized human chondrocytes. Moreover, BMAL1 knockdown assays indicated that NOB and SR8278 enhanced clock function and concordantly rendered protection against altered anabolism and catabolism in a BMAL1-dependent regime. Collectively, our study suggests that targeting RORs and REV-ERBs to promote the dampened peripheral clocks could be a route taken to apply chronotherapy within the context of OA.


Subject(s)
Cartilage, Articular , Circadian Clocks , Osteoarthritis , Mice , Animals , Humans , Circadian Clocks/genetics , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Feedback , Chondrocytes/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , Cartilage/metabolism , Cartilage, Articular/metabolism
14.
Bone Res ; 10(1): 49, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35851577

ABSTRACT

Physical mechanical stimulation can maintain and even increase bone mass. Here, we report an important role of osteocytic integrin α5 in regulating the anabolic response of bone to mechanical loading using an Itga5 conditional gene knockout (cKO) mouse model. Integrin α5 gene deletion increased apoptotic osteocytes and reduced cortical anabolic responses to tibial compression including decreased endosteal osteoblasts and bone formation, and increased endosteal osteoclasts and bone resorption, contributing to the decreased bone area fraction and biomechanical properties, leading to an enlarged bone marrow area in cKO mice. Similar disruption of anabolic responses to mechanical loading was also detected in cKO trabecular bone. Moreover, integrin α5 deficiency impeded load-induced Cx43 hemichannel opening, and production and release of PGE2, an anabolic factor, resulting in attenuated effects of the loading on catabolic sclerostin (SOST) reduction and anabolic ß-catenin increase. Together, this study shows an indispensable role of integrin α5 in osteocytes in the anabolic action of mechanical loading on skeletal tissue through activation of hemichannels and PGE2-evoked gene expression. Integrin α5 could act as a potential new therapeutic target for bone loss, especially in the elderly population with impeded mechanical sensitivity.

15.
Mol Metab ; 58: 101450, 2022 04.
Article in English | MEDLINE | ID: mdl-35121170

ABSTRACT

BACKGROUND: As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal (stromal) stem cells (BMSCs) play key roles in bone homeostasis, tissue regeneration, and global energy homeostasis; however, the intrinsic mechanism of BMSC differentiation is not well understood. Plasticity in energy metabolism allows BMSCs to match the divergent demands of osteo-adipogenic differentiation. Targeting BMSC metabolic pathways may provide a novel therapeutic perspective for BMSC differentiation unbalance related diseases. SCOPE OF REVIEW: This review covers the recent studies of glucose, fatty acids, and amino acids metabolism fuel the BMSC differentiation. We also discuss recent findings about energy metabolism in BMSC differentiation. MAJOR CONCLUSIONS: Glucose, fatty acids, and amino acids metabolism provide energy to fuel BMSC differentiation. Moreover, some well-known regulators including environmental stress, hormone drugs, and biological and pathological factors may also influence BMSC differentiation by altering metabolism. This offers insight to the significance of metabolism on BMSC fate determination and provides the possibility of treating diseases related to BMSC differentiation, such as obesity and osteoporosis, from a metabolic perspective.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Amino Acids/metabolism , Energy Metabolism , Fatty Acids/metabolism , Glucose/metabolism , Mesenchymal Stem Cells/metabolism
16.
Elife ; 112022 02 08.
Article in English | MEDLINE | ID: mdl-35132953

ABSTRACT

Mechanical stimulation, such as physical exercise, is essential for bone formation and health. Here, we demonstrate the critical role of osteocytic Cx43 hemichannels in anabolic function of bone in response to mechanical loading. Two transgenic mouse models, R76W and Δ130-136, expressing dominant-negative Cx43 mutants in osteocytes were adopted. Mechanical loading of tibial bone increased cortical bone mass and mechanical properties in wild-type and gap junction-impaired R76W mice through increased PGE2, endosteal osteoblast activity, and decreased sclerostin. These anabolic responses were impeded in gap junction/hemichannel-impaired Δ130-136 mice and accompanied by increased endosteal osteoclast activity. Specific inhibition of Cx43 hemichannels by Cx43(M1) antibody suppressed PGE2 secretion and impeded loading-induced endosteal osteoblast activity, bone formation and anabolic gene expression. PGE2 administration rescued the osteogenic response to mechanical loading impeded by impaired hemichannels. Together, osteocytic Cx43 hemichannels could be a potential new therapeutic target for treating bone loss and osteoporosis.


Subject(s)
Bone Remodeling , Bone and Bones/physiology , Connexin 43/metabolism , Prostaglandins/metabolism , Animals , Biomechanical Phenomena , Connexin 43/genetics , Dinoprostone/metabolism , Gap Junctions/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Osteocytes/metabolism , Stress, Mechanical , Weight-Bearing
17.
Mikrochim Acta ; 189(2): 70, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35067757

ABSTRACT

A colorimetric assay based on polydiacetylenes (PDA) nano-liposomes is reported for facile and sensitive detection of alkaline phosphatase (ALP) activity. The critical basis of this method is that the interaction of pyridoxal phosphate (PLP) with nitrogenous group functionalized PDA nano-liposomes induces distinct blue-to-red color changes of PDA nano-liposomes. In the presence of ALP, as a nature substrate, PLP is enzymatically hydrolyzed to form pyridoxal, which cannot interact with PDA nano-liposomes. As a result, the concentration of PLP is reduced and the color change of PDA nano-liposomes is retarded, which is associated with ALP level. Under optimal conditions, the proposed method showed good linear relationship with ALP activity in the range 10-200 U/L with a limit of detection of 2.8 U/L. The detection process could be vividly observed with the naked eye. Additional attempts by using the method for the evaluation of inhibitor efficiency were also achieved with satisfying results. The method was further challenged with real human serum samples, showing consistent results when compared with a commercial standard assay kit. Such simple and easy-to-use approach may provide a new alternative for clinical and biological detection of ALP.


Subject(s)
Alkaline Phosphatase/metabolism , Colorimetry/methods , Liposomes/chemistry , Nanostructures/chemistry , Polyacetylene Polymer/chemistry , Pyridoxal Phosphate/chemistry , Alkaline Phosphatase/chemistry , Sensitivity and Specificity
18.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055073

ABSTRACT

Exposure to high altitude environment leads to skeletal muscle atrophy. As a hormone secreted by skeletal muscles after exercise, irisin contributes to promoting muscle regeneration and ameliorating skeletal muscle atrophy, but its role in hypoxia-induced skeletal muscle atrophy is still unclear. Our results showed that 4 w of hypoxia exposure significantly reduced body weight and gastrocnemius muscle mass of mice, as well as grip strength and the duration time of treadmill exercise. Hypoxic treatment increased HIF-1α expression and decreased both the circulation level of irisin and its precursor protein FNDC5 expression in skeletal muscle. In in vitro, CoCl2-induced chemical hypoxia and 1% O2 ambient hypoxia both reduced FNDC5, along with the increase in HIF-1α. Moreover, the decline in the area and diameter of myotubes caused by hypoxia were rescued by inhibiting HIF-1α via YC-1. Collectively, our research indicated that FNDC5/irisin was negatively regulated by HIF-1α and could participate in the regulation of muscle atrophy caused by hypoxia.


Subject(s)
Fibronectins/genetics , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/complications , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Animals , Biomarkers , Cell Line , Fibronectins/metabolism , Fluorescent Antibody Technique , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Immunohistochemistry , Male , Mice , Muscular Atrophy/pathology
19.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613978

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease characterized by the degeneration of articular cartilage and thickening and sclerosis of the subchondral bone. Mechanical factors play significant roles in the development and progression of OA, but it is still controversial whether exercise or rest is a more effective treatment for OA patients. In this study, we compared the effects of swimming and immobilization at different stages of OA in mice. Four weeks (the middle stage of OA) or eight weeks (the late stage of OA) after DMM (destabilization of the medial meniscus) surgery, the mice were subjected to four-week immobilization or swimming. Ink blot analysis and a beam walking test were performed to measure the gait and balance ability. Histological analysis was performed to determine the trabecular bone area, the thickness of subchondral bone, the thickness of the cartilage, the OARSI score, and the expression of MMP13 (matrix metalloproteinases) and IL-6 (interleukin). The results showed that at the middle stage of OA, both immobilization and swimming slowed down the progression of OA. Immobilization relieved OA to a certain extent by decreasing the production of regulatory factors to attenuate the degeneration of cartilage, which partly relieved the effects of DMM on gait, mainly in the hindlimb. Swimming mainly attenuated the thickening and rescued the area of subchondral bone.


Subject(s)
Cartilage, Articular , Immobilization , Osteoarthritis , Physical Conditioning, Animal , Animals , Mice , Cartilage, Articular/physiopathology , Disease Models, Animal , Menisci, Tibial/surgery , Osteoarthritis/physiopathology , Swimming , Disease Progression
20.
Arch Physiol Biochem ; 128(5): 1137-1139, 2022 10.
Article in English | MEDLINE | ID: mdl-32552131
SELECTION OF CITATIONS
SEARCH DETAIL