Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.421
Filter
1.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003045

ABSTRACT

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Subject(s)
Arsenic , Charcoal , Machine Learning , Soil Pollutants , Soil , Charcoal/chemistry , Arsenic/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Soil/chemistry , Models, Chemical
2.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273367

ABSTRACT

Alcoholic liver disease (ALD) is a globally prevalent form of liver disease for which there is no effective treatment. Recent studies have found that a significant decrease in butyrate was closely associated with ALD development. Given the low compliance and delivery efficiency associated with oral-route butyrate administration, a highly effective butyrate-yielding dietary supplement, butyrylated high-amylose maize starch (HAMSB), is a good alternative approach. Here, we synthesized HAMSB, evaluated the effect of HAMSB on acute ALD in mice, compared its effect with that of oral administration of butyrate, and further studied the potential mechanism of action. The results showed HAMSB alleviated acute ALD in mice, as evidenced by the inhibition of hepatic-function impairment and the improvement in liver steatosis and lipid metabolism; in these respects, HAMSB supplementation was superior to oral sodium butyrate administration. These improvements can be attributed to the reduction of oxidative stress though the regulation of Nrf2-mediated antioxidant signaling in the liver and the improvement in the composition and function of microbiota in the intestine. In conclusion, HAMSB is a safe and effective dietary supplement for preventing acute ALD that could be useful as a disease-modifying functional food or candidate medicine.


Subject(s)
Butyrates , Dietary Supplements , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Liver , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Mice , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/microbiology , Liver/metabolism , Liver/drug effects , Butyrates/pharmacology , Male , Mice, Inbred C57BL , Antioxidants/pharmacology , Butyric Acid/pharmacology
3.
Food Chem X ; 23: 101685, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39220418

ABSTRACT

Storage time is considered to be one of the most important factors affecting the obnoxious odor and microbial spoilage of fresh meat. In this study, volatile organic compounds (VOCs) and bacterial community structure of chilled goose meat during storage were investigated. The results showed that numerous VOCs were produced during the fresh goose meat storage, including aldehydes (nonanal, (E)-2-octenal, hexanal, tetradecanal), alcohol (1-octen-3-ol), furan (2-pentylfuran), and carboxylic acids (methyl diethyldithiocarbamate), which might be a breakdown product during spoilage. In addition, there were slight fluctuations in fatty acid profiles and amino acid contents. Furthermore, bacterial community diversity decreased with prolonged storage. Also, Pseudomonas and Acinetobacter were the dominant spoilage bacteria contributing to nonanal and methyl diethyldithiocarbamate generation. Taken together, these data provide insights into the characterization of VOCs and the bacterial community of chilled goose meat, which will help to further control the microbial quality of chilled meat.

4.
J Sports Sci Med ; 23(1): 647-655, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39228781

ABSTRACT

Enhancing peak landing forces and ensuring faster stabilization in the lower limbs during jumping activities can significantly improve performance and decrease the risk of injury among basketball players. This study aimed to compare the effects of unilateral (uPJT) and bilateral plyometric jump training (bPJT) programs on various performance measures, including countermovement jump (CMJ), squat jump (SJ), and single-leg land and hold (SLLH) test outcomes, assessed using force plates. A randomized multi-arm study design was employed, comprising two experimental groups (n = 25; uPJT and n = 25; bPJT) and one control group (n = 25), conducted with youth male regional-level basketball players (16.3 ± 0.6 years old). Participants underwent assessment twice, both before and after an 8-week intervention training period. The uPJT program exclusively involved plyometric drills (e.g., vertical jump exercises; horizontal jump exercises) focusing on single-leg exercises, whereas the bPJT program utilized drills involving both legs simultaneously. The outcomes analyzed included CMJ peak landing force, CMJ peak power, SJ peak force, SJ maximum negative displacement, SLLH time to stabilization, and SLLH peak landing force. The control group exhibited significantly greater SLLH time to stabilization compared to both the uPJT (p < 0.001) and bPJT (p < 0.030) groups. Additionally, time to stabilization was also significantly higher in bPJT than in uPJT (p = 0.042). Comparisons between groups in regards SLLH peak landing force after intervention revealed that the value was significantly smaller in uPJT than in bPJT (p = 0.043) and control (p < 0.001). In the remaining outcomes of CMJ and SJ, both uPJT and bPJT showed significant improvement compared to the control group (p > 0.05), although there was no significant difference between them. In conclusion, our study suggests that utilizing uPJT is equally effective as bPJT in enhancing performance in bilateral jump tests. However, it significantly outperforms bPJT in improving time to stabilization and peak landing forces during single-leg land and hold test. uPJT could be advantageous not for maximizing performance but also for potentially decreasing injury risk by enhancing control and balance during single-leg actions, which are common in basketball.


Subject(s)
Athletic Performance , Basketball , Plyometric Exercise , Humans , Basketball/physiology , Male , Plyometric Exercise/methods , Adolescent , Athletic Performance/physiology , Lower Extremity/physiology , Exercise Test/methods , Biomechanical Phenomena , Muscle Strength/physiology , Leg/physiology , Physical Conditioning, Human/methods , Physical Conditioning, Human/physiology
5.
Microbiol Res ; 289: 127896, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39260133

ABSTRACT

Klebsiella pneumoniae (Kp) is increasingly recognized as a reservoir for a range of antibiotic resistance genes and a pathogen that frequently causes severe infections in both hospital and community settings. In this study, we have identified a novel mechanism of conjugative transfer of a non-conjugative virulence plasmid through the formation of a fusion plasmid between the virulence plasmid and a novel 59,162 bp IncN- plasmid. This plasmid was found to be a multidrug-resistance (MDR) plasmid and carried a T4SS cluster, which greatly facilitated the efficient horizontal transfer of the fusion plasmid between Kp strains. The fused virulence plasmid conferred the resistance of serum killing and macrophage phagocytosis to the transconjugants. Importantly, this plasmid was shown to be essential for Kp virulence in a mouse model. Mechanistic analysis revealed that the virulence factors encoded by this virulence plasmid contributed to resistance to in vivo clearance and induced a high level of proinflammatory cytokine IL-1ß, which acts as an inducer for more neutrophil recruitment. The transmission of the fusion plasmid in Kp has the potential to convert it into both MDR and hypervirulent Kp, accelerating its evolution, and posing a serious threat to human health. The findings of this study provide new insights into the rapid evolution of MDR and hypervirulent Kp in recent years.

6.
J Mol Med (Berl) ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276178

ABSTRACT

Major depressive disorder (MDD) is a prevalent mental health condition characterized by persistent feelings of sadness and hopelessness, affecting millions globally. The precise molecular mechanisms underlying MDD remain elusive, necessitating comprehensive investigations. Our study integrates transcriptomic analysis, functional assays, and computational modeling to explore the molecular landscape of MDD, focusing on the DLPFC. We identify key genomic alterations and co-expression modules associated with MDD, highlighting potential therapeutic targets. Functional enrichment and protein-protein interaction analyses emphasize the role of astrocytes in MDD progression. Machine learning is employed to develop a predictive model for MDD risk assessment. Single-cell and spatial transcriptomic analyses provide insights into cell type-specific expression patterns, particularly regarding astrocytes. We have identified significant genomic alterations and co-expression modules associated with MDD in the DLPFC. Key genes involved in neuroactive ligand-receptor interaction pathways, notably in astrocytes, have been highlighted. Additionally, we developed a predictive model for MDD risk assessment based on selected key genes. Single-cell and spatial transcriptomic analyses underscored the role of astrocytes in MDD. Virtual screening of compounds targeting GPR37L1, KCNJ10, and PPP1R3C proteins has identified potential therapeutic candidates. In summary, our comprehensive approach enhances the understanding of MDD's molecular underpinnings and offers promising opportunities for advancing therapeutic interventions, ultimately aiming to alleviate the burden of this debilitating mental health condition. KEY MESSAGES: Our investigation furnishes insightful revelations concerning the dysregulation of astrocyte-associated processes in MDD. We have pinpointed specific genes, namely KCNJ10, PPP1R3C, and GPR37L1, as potential candidates warranting further exploration and therapeutic intervention. We incorporate a virtual screening of small molecule compounds targeting KCNJ10, PPP1R3C, and GPR37L1, presenting a promising trajectory for drug discovery in MDD.

7.
Schizophr Bull Open ; 5(1): sgac047, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39144109

ABSTRACT

Background and Hypothesis: Environmental stressors may influence immune surveillance in B lymphocytes and stimulate autoimmune responses via epigenetic DNA methylation modifications in schizophrenia (SCZ). Study Design: A total of 2722, Chinese Han origin subjects were recruited in this study (2005-2011), which included a discovery follow-up cohort with 40 remitters of SCZ (RSCZ), 40 nonremitters of SCZ (NRSCZ), and 40 controls (CTL), and a replication follow-up cohort (64 RSCZ, 16 NRSCZ, and 84 CTL), as well as a case-control validation cohort (1230 SCZ and 1208 CTL). Genomic DNA methylation, target gene mRNA transcripts, and plasma autoantibody levels were measured across cohorts. Study Results: We found extensive differences in global DNA methylation profiles between RSCZ and NRSCZ groups, wherein differential methylation sites (DMS) were enriched with immune cell maturation and activation in the RSCZ group. Out of 2722 participants, the foremost DMS cg14341177 was hyper-methylated in the SCZ group and it inhibited the alternative splicing of its target gene BICD2 and may have increased its autoantigen exposure, leading to an increase in plasma anti-BICD2 IgG antibody levels. The levels of cg14341177 methylation and anti-BICD2 IgG decreased significantly in RSCZ endpoint samples but not in NRSCZ endpoint samples. There are strong positive correlations between cg14341177 methylation, anti-BICD2 IgG, and positive and negative syndrome scale (PANSS) scores in the RSCZ groups, but not in the NRSCZ groups. Conclusions: These data suggest that abnormal DNA methylation could affect autoreactive responses in SCZ, and that cg14341177 methylation and anti-BICD2 IgG levels may potentially serve as useful biomarkers.

8.
Pain ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106454

ABSTRACT

ABSTRACT: Menopausal and postmenopausal women, characterized by a significant reduction in ovarian hormones, have a high prevalence of chronic pain with great pain intensity. However, the underlying mechanism of hyperalgesia induced by ovarian hormone withdrawal remains poorly understood. Here, we report that decreases in the activity and excitability of GABAergic neurons in the dorsal raphe nucleus (DRN) are associated with hyperalgesia induced by ovariectomy in mice. Supplementation with 17ß-estradiol, but not progesterone, is sufficient to increase the mechanical pain threshold in ovariectomized (OVX) mice and the excitability of DRN GABAergic (DRNGABA) neurons. Moreover, activation of the DRNGABA neurons projecting to the lateral parabrachial nucleus was critical for alleviating hyperalgesia in OVX mice. These findings show the essential role of DRNGABA neurons and their modulation by estrogen in regulating hyperalgesia induced by ovarian hormone withdrawal, providing therapeutic basis for the treatment of chronic pain in physiological or surgical menopausal women.

9.
Animals (Basel) ; 14(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39123807

ABSTRACT

T-2 toxin, the most toxic type A trichothecene, is widely present in grain and animal feed, causing growth retardation and tissue damage in poultry. Geese are more sensitive to T-2 toxin than chickens and ducks. Although T-2 toxin has been reported to cause tibial growth plate (TGP) chondrodysplasia in chickens, tibial damage caused by T-2 toxin in geese has not been fully demonstrated. This study aims to investigate the adverse effects of T-2 toxin on tibial bone development, bone quality, chondrocyte differentiation, and bone metabolism. Here, forty-eight one-day-old male Yangzhou goslings were randomly divided into four groups and daily gavaged with T-2 toxin at concentrations of 0, 0.5, 1.0, and 2.0 mg/kg body weight for 21 days, respectively. The development of gosling body weight and size was determined by weighing and taking body measurements after exposure to different concentrations of T-2 toxin. Changes in tibial development and bone characteristics were determined by radiographic examination, phenotypic measurements, and bone quality and composition analyses. Chondrocyte differentiation in TGP and bone metabolism was characterized by cell morphology, tissue gene-specific expression, and serum marker levels. Results showed that T-2 toxin treatment resulted in a lower weight, volume, length, middle width, and middle circumference of the tibia in a dose-dependent manner (p < 0.05). Moreover, decreased bone-breaking strength, bone mineral density, and contents of ash, Ca, and P in the tibia were observed in T-2 toxin-challenged goslings (p < 0.05). In addition, T-2 toxin not only reduced TGP height (p < 0.05) but also induced TGP chondrocytes to be disorganized with reduced numbers and indistinct borders. As expected, the apoptosis-related genes (CASP9 and CASP3) were significantly up-regulated in chondrocytes challenged by T-2 toxin with a dose dependence, while cell differentiation and maturation-related genes (BMP6, BMP7, SOX9, and RUNX2) were down-regulated (p < 0.05). Considering bone metabolism, T-2 toxin dose-dependently and significantly induced a decreased number of osteoblasts and an increased number of osteoclasts in the tibia, with inhibited patterns of osteogenesis-related genes and enzymes and increased patterns of osteoclast-related genes and enzymes (p < 0.05). Similarly, the serum Ca and P concentrations and parathyroid hormone, calcitonin, and 1, 25-dihydroxycholecalciferol levels decreased under T-2 toxin exposure (p < 0.05). In summary, 2.0 mg/kg T-2 toxin significantly inhibited tibia weight, length, width, and circumference, as well as decreased bone-breaking strength, density, and composition (ash, calcium, and phosphorus) in 21-day-old goslings compared to the control and lower dose groups. Chondrocyte differentiation in TGP was delayed by 2.0 mg/kg T-2 toxin owing to cell apoptosis. In addition, 2.0 mg/kg T-2 toxin promoted bone resorption and inhibited osteogenesis in cellular morphology, gene expression, and hormonal modulation patterns. Thus, T-2 toxin significantly inhibited tibial growth and development with a dose dependence, accompanied by decreased bone geometry parameters and properties, hindered chondrocyte differentiation, and imbalanced bone metabolism.

10.
Endocrine ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129043

ABSTRACT

PURPOSE: The aim of this study was to observe the influence of differential nutritional status on bone age (BA) change according to body mass index (BMI) and analyze the risk of advanced bone age in children with overweight and obesity. METHODS: In total 23,305 children from Beijing were included in this cross-sectional study. Childhood overweight and obesity were defined according to the China and World Health Organization growth criteria. The data were analyzed by the R coding platform version 4.3.0. RESULTS: Under the Chinese criteria, 29%, 15%, and 4% of boys with overweight; 33%, 33%, and 3% of boys with obesity; 39%, 25%, and 2% of girls with overweight; and 37%, 42% and 1% of girls with obesity had advanced, significantly advanced and delayed BA, respectively. After adjustment, overweight (odds ratio, 95% confidence interval, P under the Chinese criteria: 2.52, 2.30-2.75, <0.001 and 4.54, 4.06-5.09, <0.001) and obesity (4.31, 3.85-4.82, <0.001 and 14.01, 12.39-15.85, <0.001) were risk factors for both advanced BA and significantly advanced BA. CONCLUSIONS: Different nutritional statuses lead to differences in children's BA development. Children with overweight and obesity have higher rates of advanced BA under two growth criteria, and girls have more advances in BA than boys do. Overweight and obesity are risk factors for advanced BA.

11.
Heliyon ; 10(14): e34609, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39148995

ABSTRACT

Identifying indicators of non-functional overreaching during periods of increased training volume and/or intensity is particularly relevant for understanding the detrimental impacts incurred, as well as how these factors contribute to heightened injury risks among exposed athletes. This study aimed to compare the effects of a congested training period versus a standard training period on the strength levels and landing forces of female young aerobic gymnastics athletes. A prospective cohort study design was implemented, spanning four weeks. Fifty athletes (aged 16.2 ± 1.1 years old) at a trained/developmental level, competing at the regional level, were observed throughout the study. During two of these weeks (specifically weeks 2 and 3), half of the group was subjected to a congested training period consisting of six sessions per week (HTF), while the other half continued with their regular four sessions per week (STF). During each week of observation, participants underwent evaluation using the countermovement jump test (CMJ), squat jump test (SJ), and the leg land and hold test (LHT), with measurements taken on a force platform. The main outcomes repeatedly observed over the four weeks were CMJ peak landing force, CMJ peak power, SJ peak power, SJ maximum negative displacement, LHT time to stabilization, and LHT peak drop landing force. Significant interactions (time*group) were observed in CMJ peak power (p < 0.001), CMJ peak landing force (p < 0.001), SJ peak power (p < 0.001), SJ maximum negative displacement (p < 0.001), LHT time to stabilization (p < 0.001), and LHT peak drop landing force (p < 0.001). Furthermore, the results of the final assessment revealed significantly lower CMJ peak power (p = 0.008) and SJ peak power (p = 0.002) in the HTF group compared to the STF group. Additionally, significantly higher values of CMJ peak landing force (p = 0.041), SJ maximum negative displacement (p = 0.015), and LHT peak drop landing force (p = 0.047) were observed in the HTF group compared to the STF group. In conclusion, the increase in training frequency over two weeks significantly contributed to declines in neuromuscular power performance and peak landing forces. This indicates that intensified training periods may acutely expose athletes not only to performance drops but also to an increased risk of injury due to reduced capacity to absorb landing forces.

12.
J Med Virol ; 96(9): e29884, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39206860

ABSTRACT

It is generally acknowledged that antiviral therapy can reduce the incidence of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), there remains a subset of patients with chronic HBV infection who develop HCC despite receiving antiviral treatment. This study aimed to develop a model capable of predicting the long-term occurrence of HCC in patients with chronic HBV infection before initiating antiviral therapy. A total of 1450 patients with chronic HBV infection, who received initial antiviral therapy between April 2006 and March 2023 and completed long-term follow-ups, were nonselectively enrolled in this study. Least absolute shrinkage and selection operator (LASSO) and Cox regression analysis was used to construct the model. The results were validated in an external cohort (n = 210) and compared with existing models. The median follow-up time for all patients was 60 months, with a maximum follow-up time of 144 months, during which, 32 cases of HCC occurred. The nomogram model for predicting HCC based on GGT, AFP, cirrhosis, gender, age, and hepatitis B e antibody (TARGET-HCC) was constructed, demonstrating a good predictive performance. In the derivation cohort, the C-index was 0.906 (95% CI = 0.869-0.944), and in the validation cohort, it was 0.780 (95% CI = 0.673-0.886). Compared with existing models, TARGET-HCC showed promising predictive performance. Additionally, the time-dependent feature importance curve indicated that gender consistently remained the most stable predictor for HCC throughout the initial decade of antiviral therapy. This simple predictive model based on noninvasive clinical features can assist clinicians in identifying high-risk patients with chronic HBV infection for HCC before the initiation of antiviral therapy.


Subject(s)
Antiviral Agents , Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/virology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/complications , Male , Liver Neoplasms/virology , Female , Antiviral Agents/therapeutic use , Middle Aged , Adult , Risk Factors , Nomograms , Risk Assessment , Aged , Hepatitis B virus/drug effects , Incidence , Follow-Up Studies
13.
Fish Shellfish Immunol ; 153: 109827, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39134232

ABSTRACT

MicroRNAs (miRNAs) are a category of small non-coding RNAs regarded as vital regulatory factors in various biological processes, especially immune regulation. The differently expressed miRNAs in Macrobrachium rosenbergii after the challenge of Vibrio parahaemolyticus were identified using high-throughput sequencing. A total of 18 known as well as 12 novel miRNAs were markedly differently expressed during the bacterial infection. The results of the target gene prediction and enrichment analysis indicated that a total of 230 target genes involved in a large variety of signaling pathways and biological processes were mediated by the miRNAs identified in the current research. Additionally, the effects of novel-miR-56, a representative differentially expressed miRNA identified in the previous infection experiment, on the immune-related gene expression in M. rosenbergii were explored. The expression of the immune-related genes including Spätzle1(Spz1), Spz4, Toll-like receptor 1 (TLR1), TLR2, TLR3, immune deficiency (IMD), myeloid differentiation factor 88 (MyD88), anti-lipopolysaccharide factor 1 (ALF1), crustin1, as well as prophenoloxidase (proPO) was significantly repressed in the novel-miR-56-overexpressed prawns. The expression of these genes tested in the novel-miR-56-overexpressed M. rosenbergii was still signally lower than the control in the subsequent V. parahaemolyticus challenge, despite the gene expression in each treatment increased significantly after the infection. Additionally, the cumulative mortality of the agomiR-56-treated prawns was significantly higher than the other treatments post the bacterial challenge. These results suggested that novel-miR-56 might function as a negative regulator of the immune-related gene expression of M. rosenbergii in the innate immune defense against V. parahaemolyticus.


Subject(s)
Immunity, Innate , MicroRNAs , Palaemonidae , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/physiology , Palaemonidae/immunology , Palaemonidae/genetics , MicroRNAs/genetics , MicroRNAs/immunology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary
14.
Int J Biol Macromol ; 277(Pt 4): 134507, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111502

ABSTRACT

Alkali-induced preserved egg gel formation is a dynamic process that involves complex protein changes. Ovomucin (OVM) is closely associated with the gel properties of egg white. In this study, the effect of OVM in alkali-induced egg white gel (AEWG) formation was investigated. The results suggested that OVM reduced the gel formation time by 15 %. The mechanical properties of the fully formed gel were also improved by OVM. Specifically, OVM increased the storage modulus (G') of the gel by 1.5-fold, while the hardness significantly increased from 78.90 ± 4.24 g to 99.80 ± 9.23 g. Low-field nuclear magnetic resonance (LF-NMR) demonstrated that OVM significantly shortened T23 relaxation time and reduced the water mobility, thus increasing the water holding capacity (WHC). Meanwhile, the presence of OVM resulted in a more homogeneous and denser microscopic morphology of the gel. Selective solubility experiments revealed that disulfide bonds are the primary force in gel formation. OVM promoted the formation of more disulfide bonds, which increased the strength and stability of the gel network. Overall, this research proved OVM plays a critical role in the performance improvement of AEWG, which provides a new insight into the quality control of preserved egg and protein gel foods.


Subject(s)
Alkalies , Egg White , Gels , Ovomucin , Egg White/chemistry , Ovomucin/chemistry , Gels/chemistry , Alkalies/chemistry , Water/chemistry , Solubility , Animals , Chickens , Rheology
15.
J Funct Biomater ; 15(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39194643

ABSTRACT

The issue of bacterial resistance is an escalating problem due to the misuse of antibiotics worldwide. This study introduces a new antibacterial mechanism, the ferroptosis-like death (FLD) of bacteria, and an approach to creating green antibacterial nano-reactors. This innovative method leverages natural iron-containing ovotransferrin (OVT) assembled into an organic skeleton to encapsulate low-concentration adriamycin (ADM) for synthesizing eco-friendly nano-reactors. FLD utilizes the Fenton reaction of reactive oxygen species and ferrous ions to continuously produce ·OH, which can attack the bacterial cell membrane and destroy the cell structure to achieve bacteriostasis. The OVT@ADM nano-reactors are nearly spherical, with an average diameter of 247.23 nm and uniform particle sizing. Vitro simulations showed that Fe3+ in OVT@ADM was reduced to Fe2+ by glutathione in the bacterial periplasmic space, which made the structure of OVT loose, leading to a sustained slow release of ADM from OVT@ADM. The H2O2 continuously produced by ADM oxidized Fe2+ through the Fenton reaction to produce ·OH and Fe3+. The results of the antibacterial assay showed that OVT@ADM had a satisfactory antibacterial effect against S. aureus, and the inhibition rate was as high as 99.3%. The cytotoxicity results showed that the mitigation strategy significantly reduced the cytotoxicity caused by ADM. Based on the FLD mechanism, OVT@ADM nano-reactors were evaluated and applied to bacteriostasis. Therefore, the novel antibacterial mechanism and OVT@ADM by the green synthesis method have good application prospects.

16.
Nature ; 632(8026): 782-787, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39143208

ABSTRACT

Hot-carrier transistors are a class of devices that leverage the excess kinetic energy of carriers. Unlike regular transistors, which rely on steady-state carrier transport, hot-carrier transistors modulate carriers to high-energy states, resulting in enhanced device speed and functionality. These characteristics are essential for applications that demand rapid switching and high-frequency operations, such as advanced telecommunications and cutting-edge computing technologies1-5. However, the traditional mechanisms of hot-carrier generation are either carrier injection6-11 or acceleration12,13, which limit device performance in terms of power consumption and negative differential resistance14-17. Mixed-dimensional devices, which combine bulk and low-dimensional materials, can offer different mechanisms for hot-carrier generation by leveraging the diverse potential barriers formed by energy-band combinations18-21. Here we report a hot-emitter transistor based on double mixed-dimensional graphene/germanium Schottky junctions that uses stimulated emission of heated carriers to achieve a subthreshold swing lower than 1 millivolt per decade beyond the Boltzmann limit and a negative differential resistance with a peak-to-valley current ratio greater than 100 at room temperature. Multi-valued logic with a high inverter gain and reconfigurable logic states are further demonstrated. This work reports a multifunctional hot-emitter transistor with significant potential for low-power and negative-differential-resistance applications, marking a promising advancement for the post-Moore era.

17.
J Agric Food Chem ; 72(34): 18809-18815, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39145990

ABSTRACT

Novel approaches for pest control are essential to ensure a sufficient food supply for the growing global population. The development of new insecticides must meet rigorous regulatory requirements for safety and address the resistance issues of existing insecticides. Proteolysis-targeting chimeras (PROTACs), originally developed for human diseases, show promise in agriculture. They offer innovative insecticides tailored to overcome resistance, opening avenues for agricultural applications. In this study, we developed small-molecule degraders by incorporating pomalidomide as an E3 ligand. These degraders were linked to a ligand (spirotetratmat enol) targeting the ACC protein through a flexible chain, aiming to achieve the efficient control of insects. Compounds 9a-9d were designed, synthesized, and evaluated for biological activities and mechanisms. Among them, 9b exhibited superior potency against Aphis craccivora (LC50 = 107.8 µg mL-1) compared to others and effectively degraded ACC proteins through the ubiquitin-proteasome system. These findings highlight the potential of utilizing PROTAC-based approaches in the development of insecticides for efficient pest control.


Subject(s)
Acetyl-CoA Carboxylase , Insecticides , Proteolysis , Insecticides/chemistry , Insecticides/pharmacology , Animals , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Drug Design , Thalidomide/chemistry , Thalidomide/analogs & derivatives , Thalidomide/pharmacology
18.
Genes (Basel) ; 15(8)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39202404

ABSTRACT

As a founding member of the Src family of kinases, Src has been confirmed to participate in the regulation of immune responses, integrin signaling, and motility. Ducks are usually asymptomatic carriers of RNA viruses such as Newcastle disease virus and avian influenza virus, which can be deadly to chickens. The beneficial role of Src in modulating the immune response remains largely unknown in ducks. Here, we characterized the duck Src and found that it contains a 192-base-pair 5' untranslated region, a 1602-base-pair coding region, and a 2541-base-pair 3' untranslated region, encoding 533 amino acid residues. Additionally, duSrc transcripts were significantly activated in duck tissues infected by Newcastle disease virus compared to controls. The duSrc transcripts were notably widespread in all tissues examined, and the expression level was higher in liver, blood, lung, pancreas, and thymus. Moreover, we found the expression levels of IFN-ß, NF-κB, IRF3, and Src were significantly increased in DEFs after infection with 5'ppp dsRNA, but there was no significant difference before and after treatment in DF1 cells. Furthermore, overexpression of duSrc followed by stimulation with 5'ppp dsRNA led to an elevation of IFN-ß levels. The SH3 and PTKc domains of duSrc contributed to promoting the activity of IFN-ß and NF-κB in DEFs stimulated by 5'ppp dsRNA.


Subject(s)
Cloning, Molecular , Ducks , Animals , Ducks/genetics , Ducks/immunology , Ducks/virology , src-Family Kinases/genetics , src-Family Kinases/metabolism , Newcastle disease virus/immunology , Newcastle disease virus/genetics , Avian Proteins/genetics , Avian Proteins/immunology , Avian Proteins/metabolism , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle Disease/genetics , Interferon-beta/genetics , Interferon-beta/immunology , Interferon-beta/metabolism , Tissue Distribution , Poultry Diseases/immunology , Poultry Diseases/virology , Poultry Diseases/genetics
19.
Genes (Basel) ; 15(8)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39202396

ABSTRACT

The mitochondrial cytochrome c oxidase subunit I (COI) genes of six endangered goose breeds (Xupu, Yangjiang, Yan, Wuzong, Baizi, and Lingxian) were sequenced and compared to assess the genetic diversity of endangered goose breeds. By constructing phylogenetic trees and evolutionary maps of genetic relationships, the affinities and degrees of genetic variations among the six different breeds were revealed. A total of 92 polymorphic sites were detected in the 741 bp sequence of the mtDNA COI gene after shear correction, and the GC content of the processed sequence (51.11%) was higher than that of the AT content (48.89%). The polymorphic loci within the populations of five of the six breeds (Xupu, Yangjiang, Yan, Baizi, and Lingxian) were more than 10, the haplotype diversity > 0.5, and the nucleotide diversity (Pi) > 0.005, with the Baizi geese being the exception. A total of 35 haplotypes were detected based on nucleotide variation among sequences, and the goose breed haplotypes showed a central star-shaped dispersion; the FST values were -0.03781 to 0.02645, The greatest genetic differentiation (FST = 0.02645) was observed in Yan and Wuzong breeds. The most frequent genetic exchange (Nm > 15.00) was between the Wuzong and Yangjiang geese. An analysis of molecular variance showed that the population genetic variation mainly came from within the population; the base mismatch differential distribution analysis of the goose breeds and the Tajima's D and Fu's Fs neutral detection of the historical occurrence dynamics of their populations were negative (p > 0.10). The distribution curve of the base mismatches showed a multimodal peak, which indicated that the population tended to be stabilised. These results provide important genetic information for the conservation and management of endangered goose breeds and a scientific basis for the development of effective conservation strategies.


Subject(s)
Electron Transport Complex IV , Endangered Species , Geese , Haplotypes , Phylogeny , Animals , Geese/genetics , Electron Transport Complex IV/genetics , Genetic Variation , DNA, Mitochondrial/genetics , Breeding , China , Mitochondria/genetics
20.
Sci Total Environ ; 951: 175214, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39106903

ABSTRACT

In this study, magnesium oxysulfate cement (MOS) was used as a binder for curing loess. The changes in bulk density, porosity, mineral structure and microstructure of the consolidated loess were systematically studied and verified. The porosity decreased from 40.97 % in pure loess to 28.75 % in 13 % MOS solidified sample. Scanning electron microscopy, energy spectrum analysis and thermogravimetric analysis revealed that the addition of MOS binder resulted in the formation of hydrated products, including Mg(OH)2, MgO·mSiO2·nH2O (M-S-H), and 3Mg(OH)2·MgSO4·8H2O (3·1·8 phase), which effectively filled the voids between the grains and facilitated strong bonding among them. After a curing period of 28 days, the compressive strength of loess stabilized with 13 % MOS exhibited an increase to 7.9 MPa. Moreover, following immersion in water for 24 h, the softening coefficient K remained at 0.66. Furthermore, after undergoing five cycles of freeze-thaw cycling, the rate of change in compressive strength RP was only 6.3 %. All the results indicate that MOS exhibits promising potential as a binder for soil stabilization applications.

SELECTION OF CITATIONS
SEARCH DETAIL