Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Front Microbiol ; 15: 1391558, 2024.
Article in English | MEDLINE | ID: mdl-38846565

ABSTRACT

Sanghuangprous vaninii is a medicinal macrofungus cultivated extensively in China. Both the mycelia and fruiting bodies of S. vaninii have remarkable therapeutic properties, but it remains unclear whether the mycelia may serve as a substitute for the fruiting bodies. Furthermore, S. vaninii is a perennial fungus with therapeutic components that vary significantly depending on the growing year of the fruiting bodies. Hence, it is critical to select an appropriate harvest stage for S. vaninii fruiting bodies for a specific purpose. With the aid of Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), metabolomics based on ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS) was used to preliminarily determine 81 key active metabolites and 157 active pharmaceutical metabolites in S. vaninii responsible for resistance to the six major diseases. To evaluate the substitutability of the mycelia and fruiting bodies of S. vaninii and to select an appropriate harvest stage for the fruiting bodies of S. vaninii, we analyzed the metabolite differences, especially active metabolite differences, among the mycelia and fruiting bodies during three different harvest stages (1-year-old, 2-year-old, and 3-year-old). Moreover, we also determined the most prominent and crucial metabolites in each sample of S. vaninii. These results suggested that the mycelia show promise as a substitute for the fruiting bodies of S. vaninii and that extending the growth year does not necessarily lead to higher accumulation levels of active metabolites in the S. vaninii fruiting bodies. This study provided a theoretical basis for developing and using S. vaninii.

2.
J Nutr Biochem ; 131: 109687, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866191

ABSTRACT

Glucose metabolic disorders, prevalent in numerous metabolic diseases, have become a pressing global public health concern. Artemisinin (ART) and its derivatives, including artesunate (ARTs) and artemether (ARTe), have shown potential as metabolic regulators. However, the specific effects of ART and its derivatives on glucose metabolism under varying nutritional conditions and the associated molecular mechanisms remain largely unexplored. In this study, we examined the impact of ART, ARTs, and ARTe on glucose homeostasis using a mouse model subjected to different dietary regimens. Our findings revealed that ART, ARTs, and ARTe increased blood glucose levels in mice on a normal-chow diet (ND) while mitigating glucose imbalances in high-fat diet (HFD) mice. Notably, treatment with ART, ARTs, and ARTe had contrasting effects on in vivo insulin signaling, impairing it in ND mice and enhancing it in HFD mice. Moreover, the composition of gut microbiota underwent significant alterations following administration of ART and its derivatives. In ND mice, these treatments reduced the populations of bacteria beneficial for improving glucose homeostasis, including Parasutterella, Alloprevotella, Bifidobacterium, Ileibacterium, and Alistipes. In HFD mice, there was an increase in the abundance of beneficial bacteria (Alistipes, Akkermanisia) and a decrease in bacteria known to negatively impact glucose metabolism (Coprobacillus, Helicobacter, Mucispirillum, Enterorhabdus). Altogether, ART, ARTs, and ARTe exhibited distinct effects on the regulation of glucose metabolism, depending on the nutritional context, and these effects were closely associated with modifications in gut microbiota composition.

3.
J Phys Chem A ; 128(18): 3587-3595, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38640443

ABSTRACT

The metal-ligand charge transfer (3MLCT) and phosphorescence-quenching metal-centered (3MC) states of the helicate and mesocate diastereoisomers of a double-stranded dinuclear polypyridylruthenium(II) complex have been investigated using ultrafast transient absorption spectroscopy. At 294 K, transient signals of the helicate decayed significantly slower than those of the mesocate, whereas at 77 K, no clear contrast in kinetics was observed. Contributions to excited-state decay from high-lying 3MLCT states were identified at both temperatures. Spectroscopic data (294 K) suggest that the 3MC state of the helicate lies above the 3MLCT and that the reverse is true for the mesocate; this was further validated by density functional theory calculations. The stabilization of the 3MC state relative to the 3MLCT state in the mesocate was explained by a reduction in ligand field strength due to distortion near the ligand bridge, which causes further deviation from octahedral geometry compared to the helicate. This work illustrates how minor structural differences can significantly influence excited state dynamics.

4.
Chem Sci ; 15(9): 3262-3272, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425519

ABSTRACT

The precisely engineered structures of materials greatly influence the manifestation of their properties. For example, in the process of alkali metal ion storage, a carefully designed structure capable of accommodating inserted and extracted ions will improve the stability of material cycling. The present study explores the uniform distribution of self-grown carbon nanotubes to provide structural support for the conductive and elastic MXene layers of Ti3C2Tx-Co@NCNTs. Furthermore, a compatible electrolyte system has been optimized by analyzing the solvation structure and carefully regulating the component in the solid electrolyte interphase (SEI) layer. Mechanistic studies demonstrate that the decomposition predominantly controlled by FSI- leads to the formation of a robust inorganic SEI layer enriched with KF, thus effectively inhibiting irreversible side reactions and major structural deterioration. Confirming our expectations, Ti3C2Tx-Co@NCNTs exhibits an impressive reversible capacity of 260 mA h g-1, even after 2000 cycles at 500 mA g-1 in 1 M KFSI (DME), surpassing most MXene-based anodes reported for PIBs. Additionally, density functional theory (DFT) calculations verify the superior electronic conductivity and lower K+ diffusion energy barriers of the novel superstructure of Ti3C2Tx-Co@NCNTs, thereby affirming the improved electrochemical kinetics. This study presents systematic evaluation methodologies for future research on MXene-based anodes in PIBs.

5.
Acta Ophthalmol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38516719

ABSTRACT

PURPOSE: To develop and validate an effective nomogram for predicting poor response to orthokeratology. METHODS: Myopic children (aged 8-15 years) treated with orthokeratology between February 2018 and January 2022 were screened in four hospitals of different tiers (i.e. municipal and provincial) in China. Potential predictors included 32 baseline clinical variables. Nomogram for the outcome (1-year axial elongation ≥0.20 mm: poor response; <0.20 mm: good response) was computed from a logistic regression model with the least absolute shrinkage and selection operator. The data from the First Affiliated Hospital of Chengdu Medical College were randomly assigned (7:3) to the training and validation cohorts. An external cohort from three independent multicentre was used for the model test. Model performance was assessed by discrimination (the area under curve, AUC), calibration (calibration plots) and utility (decision curve analysis). RESULTS: Between January 2022 and March 2023, 1183 eligible subjects were screened from the First Affiliated Hospital of Chengdu Medical College, then randomly divided into training (n = 831) and validation (n = 352) cohorts. A total of 405 eligible subjects were screened in the external cohort. Predictors included in the nomogram were baseline age, spherical equivalent, axial length, pupil diameter, surface asymmetry index and parental myopia (p < 0.05). This nomogram demonstrated excellent calibration, clinical net benefit and discrimination, with the AUC of 0.871 (95% CI 0.847-0.894), 0.863 (0.826-0.901) and 0.817 (0.777-0.857) in the training, validation and external cohorts, respectively. An online calculator was generated for free access (http://39.96.75.172:8182/#/nomogram). CONCLUSION: The nomogram provides accurate individual prediction of poor response to overnight orthokeratology in Chinese myopic children.

6.
Toxicon ; 242: 107703, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38522586

ABSTRACT

Benthic freshwater cyanobacteria have the potential to produce toxins. Compared with more extensively studied plankton species, little is known about the impact of harmful benthic cyanobacteria on aquatic organisms. As demersal fish are usually in direct contact with benthic cyanobacteria, it is important to understand their interactive effects. This study investigated the physio-chemical responses of two demersal fish (Xenocypris davidi and Crucian carp) after exposure to benthic Oscillatoria (producing cylindrospermopsin, 2 × 106 cells/mL) for 7 days. Interestingly, benthic Oscillatoria had less adverse effects on X. davidi than C. carp. The two demersal fish effectively ingested Oscillatoria, but Oscillatoria cell sheathes could not be fully digested in C. carp intestines and led to growth inhibition. Oscillatoria consumption induced oxidative stress and triggered alterations in detoxification enzyme activities in the X. davidi liver. Superoxide dismutase (SOD) and glutathione reductase (GR) activities significantly increased in the C. carp liver, but catalase (CAT) and detoxification enzymes glutathione S-transferase (GST) and glutathione (GSH) activities were insignificantly changed. This suggested that C. carp may have a relatively weak detoxification capacity for toxic Oscillatoria. Oscillatoria ingestion led to more pronounced liver pathological changes in C. carp, including swelling, deformation, and loss of cytoskeleton structure. Simultaneously, fish consumption of Oscillatoria increased extracellular cylindrospermopsin concentration. These results provide valuable insights into the ecological risks associated with benthic cyanobacteria in aquatic ecosystems.


Subject(s)
Bacterial Toxins , Carps , Cyanobacteria Toxins , Liver , Oxidative Stress , Animals , Liver/pathology , Bacterial Toxins/toxicity , Cyanobacteria , Antioxidants/metabolism , Alkaloids , Oscillatoria , Uracil/analogs & derivatives , Uracil/toxicity , Superoxide Dismutase/metabolism , Marine Toxins/toxicity
7.
J Colloid Interface Sci ; 665: 240-251, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38531271

ABSTRACT

Seawater electrolysis to generate hydrogen offers a clean, green, and sustainable solution for new energy. However, the catalytic activity and durability of anodic catalysts are plagued by the corrosion and competitive oxidation reactions of chloride in high concentrations. In this study, we find that the additive CrO42- anions in the electrolyte can not only promote the formation and stabilization of the metal oxyhydroxide active phase but also greatly mitigate the adverse effect of Cl- on the anode. Linear sweep voltammetry, accelerated corrosion experiments, corrosion polarization curves, and charge transfer resistance results indicate that the addition of CrO42- distinctly improves oxygen evolution reaction (OER) kinetics and corrosion resistance in alkaline seawater electrolytes. Especially, the introduction of CrO42- even in the highly concentrated NaCl (2.5 M) electrolyte prolongs the durability of NiFe-LDH to almost five times the case without CrO42-. Density functional theory calculations also reveal that the adsorption of CrO42- can tune the electronic configuration of active sites of metal oxyhydroxides, enhance conductivity, and optimize the intermediate adsorption energies. This anionic additive strategy can give a better enlightenment for the development of efficient and stable oxygen evolution reactions for seawater electrolysis.

8.
Front Psychiatry ; 15: 1309501, 2024.
Article in English | MEDLINE | ID: mdl-38469031

ABSTRACT

Introduction: Emotional words are often used as stimulus material to explore the cognitive and emotional characteristics of individuals with depressive disorder, while normal individuals mostly rate the scores of affective words. Given that individuals with depressive disorder exhibit a negative cognitive bias, it is possible that their depressive state could influence the ratings of affective words. To enhance the validity of the stimulus material, we specifically recruited patients with depression to provide these ratings. Methods: This study provided subjective ratings for 501 Chinese affective norms, incorporating 167 negative words selected from depressive disorder patients' Sino Weibo blogs, and 167 neutral words and 167 positive words selected from the Chinese Affective Word System. The norms are based on the assessments made by 91 patients with depressive disorder and 92 normal individuals, by using the paper-and-pencil quiz on a 9-point scale. Results: Regardless of the group, the results show high reliability and validity. We identified group differences in three dimensions: valence, arousal, and self-relevance: the depression group rated negative words higher, but positive and neutral words lower than the normal control group. Conclusion: The emotional perception affected the individual's perception of words, to some extent, this database expanded the ratings and provided a reference for exploring norms for individuals with different emotional states.

9.
Hortic Res ; 11(3): uhae031, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481937

ABSTRACT

Apple fruit skin color fading is not well understood although the molecular mechanism of skin color formation is well known. The red-fleshed apple cultivar 'Daihong' (DH) exhibited fading skin color during fruit development despite having a heterozygous R6 allele but lacking Red-TE for red fruit skin. In this study, transcriptomic analysis revealed the expression level of MdMYB10 increased with fruit development whereas reduced expression levels of MdMYBPA1, MdCHS, MdANS, MdUFGT, MdLAR, and MdANR were observed, consistent with decreased levels of chalcone, anthocyanin, catechin, epicatechin, and procyanidin B2. Whole-genome bisulfite sequencing (WGBS) indicated a global gain in cytosine methylation levels and increased methylation in 5' and 3' flanking regions of genes and transposable elements (TEs), and in TE bodies in all CG, CHG and CHH contexts, especially the mCHH context, during fruit development. The increased DNA methylation was attributed to reduced expression levels of DNA demethylase genes, including MdDME1, MdROS1, and MdROS2. Association analysis revealed a significant negative correlation between promoter methylation levels of MdCHS, MdCHI, MdMYBPA1, and their respective transcript levels, as well as a negative correlation between promoter methylation levels of MdCHS, MdCHI, MdANR, and MdFLS, and the content of chalcones, naringenin-7-glucoside, epicatechin, and quercetin. Treatment with the DNA demethylation agent 5-aza-2'-deoxycytidine verified the negative correlation between DNA methylation and gene expression within the flavonoid pathway. These findings suggest that hypermethylation in promoter regions of genes of the flavonoid biosynthesis pathway is associated with the reduction of gene expression and flavonoid content, and fruit skin color fading during DH apple development.

10.
J Voice ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38493017

ABSTRACT

OBJECTIVE: To systematically evaluate the clinical efficacy and safety of proton-pump inhibitors (PPIs) combined with alginate versus PPIs alone in the treatment of gastroesophageal reflux disease (GERD). METHODS: Randomised Controlled Trials (RCTs) of PPIs combined with alginate and PPIs alone for the treatment of GERD in PubMed, Embase, and The Cochrane Library were searched and screened, and the risk assessment of bias and statistical analysis were performed using Rev Man 5.4 software. RESULTS: A total of four RCTs (608 patients) were included. Before and after treatment, the change of heartburn score in the experimental group increased compared with the control group, but the difference was not statistically significant [Standard Mean Difference (SMD)= -0.29, 95%CI (-0.78, 0.19), P > 0.05]; The change of HRDQ heartburn score increased, but the difference was not statistically significant [SMD= -0.40, 95%CI (-1.04, 0.24), P > 0.05]; The number of days without heartburn during the 28-day treatment period increased, but the difference was not statistically significant [OR= 1.16, 95%CI (0.37, 3.61), P > 0.05]; The amount of reflux score increased, but the difference was not statistically significant [SMD= -0.30, 95%CI (-0.71, 0.11), P > 0.05]; The amount of change in HRDQ regurgitation score increased, but the difference was not statistically significant [SMD= -0.05,95%CI (- 1.57,0.17), P > 0.05]; There was no statistically significant difference in adverse events with treatment [OR= 0.93, 95%CI (0.58, 1.47), P > 0.05]. CONCLUSION: In the treatment of GERD, the efficacy of PPIs combined with alginate is improved compared with PPIs alone, but there is no significant difference, and alginate does not increase the occurrence of adverse events in PPIs treatment. In the future, more subdivisions of GERD subtypes and more high-quality studies are needed to further improve the treatment strategy of GERD-related diseases.

11.
J Wound Ostomy Continence Nurs ; 51(2): 111-116, 2024.
Article in English | MEDLINE | ID: mdl-38527319

ABSTRACT

PURPOSE: The primary aims of this study were to evaluate the prevalence of wound-related pain (WRP) in patients with chronic wounds and assess the use of pain relief measures. DESIGN: A cross-sectional study. SUBJECTS AND SETTING: A convenience sample of patients with chronic wounds was recruited from outpatient clinics of 12 hospitals covering 7 of 13 cities in the Jiangsu province located in eastern China from July 10 to August 25, 2020. The sample comprised 451 respondents, and their mean age was 54.85 (SD 19.16) years; 56.1% (253/451) patients were male. METHODS: An investigator-designed questionnaire was used to collect pain-related information from patients. The questionnaire consisted of 4 parts: (1) basic demographic and clinical information (patient and wound characteristics); (2) wound baseline pain; (3) wound-related procedural pain and pain relief method; and (4) the effect of WRP on the patient. Pain was assessed using the Numerical Rating Scale (NRS) scored from 0 (no pain) to 10 (worst pain). Severity of pain was based on NRS scores' classification as mild (1-3), moderate (4-6), and severe (7-10). The survey was conducted from July 10 to August 25, 2020. Participants were instructed on use of the NRS and then completed the questionnaire following dressing change independently. RESULTS: The 3 most common types of chronic wounds were traumatic ulcers, surgical wounds, and venous leg ulcers. The 3 most prevalent locations were lower limbs, feet, and thorax/abdomen. Of all patients, 62.5% (282/451) and 93.8% (423/451) patients experienced wound baseline pain and wound-related procedural pain, respectively. The mean score of wound baseline pain was 3.76 (SD 1.60) indicating moderate pain. During wound management, the highest pain score was 6.45 (SD 2.75) indicating severe pain; the most severe pain scores were associated with debridement. The use of drugs to relieve wound pain was low, while the use of nondrug-based analgesia was relatively high. Because of WRP, patients with chronic wounds feared dressing changes, hesitated to move, and showed a decline in sleep quality. CONCLUSIONS: Wound baseline pain and wound-related procedural pain were very common in patients with chronic wounds. In the future, targeted intervention plans should be developed by combining drug-based and nondrug-based analgesia according to pain severity.


Subject(s)
Pain, Procedural , Varicose Ulcer , Humans , Male , Middle Aged , Female , Cross-Sectional Studies , Pain , Surveys and Questionnaires , Surgical Wound Infection
12.
Cell Rep ; 43(2): 113750, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38340318

ABSTRACT

To maintain an effective barrier, intestinal progenitor cells must divide at a rate that matches the loss of dead and dying cells. Otherwise, epithelial breaches expose the host to systemic infection by gut-resident microbes. Unlike most pathogens, Vibrio cholerae blocks tissue repair by arresting progenitor proliferation in the Drosophila model. At present, we do not understand how V. cholerae circumvents such a critical antibacterial defense. We find that V. cholerae blocks epithelial repair by activating the growth inhibitor bone morphogenetic protein (BMP) pathway in progenitors. Specifically, we show that interactions between V. cholerae and gut commensals initiate BMP signaling via host innate immune defenses. Notably, we find that V. cholerae also activates BMP and arrests proliferation in zebrafish intestines, indicating an evolutionarily conserved link between infection and failure in tissue repair. Our study highlights how enteric pathogens engage host immune and growth regulatory pathways to disrupt intestinal epithelial repair.


Subject(s)
Vibrio cholerae , Zebrafish , Animals , Anti-Bacterial Agents , Bone Morphogenetic Proteins , Drosophila , Cell Proliferation
13.
ACS Appl Mater Interfaces ; 16(10): 13191-13201, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38415401

ABSTRACT

The demand for the detection of ultralow concentrations of ammonia gas is growing. A bimetallic metal-organic framework (MOF) comprising Prussian blue analogs (PBAs) was used to achieve highly sensitive and stable detection of ammonia gas at room temperature in this study. First, PB was enriched by using ammonia for improved gas sensing properties. Second, a sensitive membrane with more vacancies was formed by partially replacing Fe3+ with Cu2+ through a cation-exchange strategy. Finally, a capacitive sensor was developed for ultralow-concentration ammonia detection using a Cu-Fe PBA sensitive membrane and interdigitated electrodes (IDEs). To investigate the adsorption efficiency of the designed composite sensitive film for ammonia, PBAs nanoparticles were deposited on a quartz microcrystal balance (QCM) via cyclic voltammetry and a hydrothermal method. Approximately 10 ppm of ammonia was adsorbed under 1 atm by the Cu-Fe PBA film prepared using a reaction time of 36 h, and the adsorption efficiency was measured to be 2.2 mmol g-1 using the QCM frequency response. The Cu-Fe PBAs were also tested using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller theory. The introduction of Cu2+ ions significantly increased the specific surface area of Cu-Fe PBAs MOF, and the number of adsorption sites for ammonia also increased; however, its skeleton structure remained similar to that of PB. Then, the capacitive sensor based on Cu-Fe PBA sensitive membrane and IDE was fabricated and the gas sensing detection device was established for ammonia detection. Overall, the developed capacitive sensor exhibits a linear response of 75-1000 ppb and a detection limit of 3.8 ppb for ultralow ammonia concentrations, which makes it superior to traditional detection methods and thus allows excellent application prospects.

14.
J Ethnopharmacol ; 326: 117905, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38364934

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pi-pa-run-fei-tang (PPRFT), a traditional Chinese medicine formula with long-standing history, demonstrated beneficial effect on chronic cough. However, the mechanism underlying efficacy unclear. In current research, we explored the impact and molecular mechanism of chronic cough mouse stimulating with capsaicin combined with ammonia. AIM OF THE STUDY: To investigate the metabolic modulating effects, and potential mechanisms underlying the therapeutic effect of PPRFT in chronic cough. MATERIALS AND METHODS: Chronic cough mouse models were created by stimulating mice by capsaicin combined with ammonia. Number of coughs and cough latency within 2 min were recorded. With lung tissue and serum samples collected for histopathology, metabolomics, RT-qPCR, immunohistochemistry, and WB analysis. Lymphocytes were isolated and flow cytometric assays were conducted to evaluate the differentiation between Th17 and Treg cell among CD4+ cells. RESULTS: Results indicated that PPRFT obviously reduced the number of coughs, prolonged cough latency, reduced inflammatory cell infiltration and lung tissues damage, and decreased the serum level of IL-6, IL-1ß, TNF-α, and IL-17 while increasing IL-10 levels. Notably, PPRFT suppressed Th17 cell divergence and promoted Treg cell divergence. Furthermore, serum metabolomic assays showed that 46 metabolites differed significantly between group, with 35 pathways involved. Moreover, mRNA levels of IL-6, NF-κB, IL-17, RORγT, JAK2, STAT3, PI3K and AKT in lung tissues remarkably reduced and mRNA levels of IL-10 and FOXP3 were elevated after PPRFT pretreatment. Additionally, PPRFT treatments decreased the protein levels of IL-6, NF-κB, IL-17, RORγT, p-JAK2, p-STAT3, p-PI3K, and p-AKT and increased the protein levels of IL-10 and FOXP3, but no significantly effects to the levels on JAK2, STAT3, PI3K, and AKT in the lungs. CONCLUSION: Conclusively, our result suggested the effect with PPRFT on chronic cough may be mediated through IL-6/JAK2/STAT3 and PI3K/AKT/NF-κB pathway, which regulate the differentiation between Th17 and Treg cell. This beneficial effect of PPRFT in capsaicin and ammonia-stimulated chronic cough mice indicates its potential application in treating chronic cough.


Subject(s)
Cytokines , Interleukin-10 , Mice , Animals , Interleukin-10/metabolism , Cytokines/metabolism , Interleukin-17/metabolism , NF-kappa B/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Ammonia/metabolism , Interleukin-6/metabolism , Chronic Cough , Capsaicin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/metabolism , RNA, Messenger/metabolism , Th17 Cells
15.
J Med Virol ; 96(2): e29452, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314852

ABSTRACT

The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been accompanied by the emergence of viral mutations that pose a great challenge to existing vaccine strategies. It is not fully understood with regard to the role of mutations on the SARS-CoV-2 spike protein from emerging viral variants in T cell immunity. In the current study, recombinant eukaryotic plasmids were constructed as DNA vaccines to express the spike protein from multiple SARS-CoV-2 strains. These DNA vaccines were used to immunize BALB/c mice, and cross-T cell responses to the spike protein from these viral strains were quantitated using interferon-γ (IFN-γ) Elispot. Peptides covering the full-length spike protein from different viral strains were used to detect epitope-specific IFN-γ+ CD4+ and CD8+ T cell responses by fluorescence-activated cell sorting. SARS-CoV-2 Delta and Omicron BA.1 strains were found to have broad T cell cross-reactivity, followed by the Beta strain. The landscapes of T cell epitopes on the spike protein demonstrated that at least 30 mutations emerging from Alpha to Omicron BA.5 can mediate the escape of T cell immunity. Omicron and its sublineages have 19 out of these 30 mutations, most of which are new, and a few are inherited from ancient circulating variants of concerns. The cross-T cell immunity between SARS-CoV-2 prototype strain and Omicron strains can be attributed to the T cell epitopes located in the N-terminal domain (181-246 aa [amino acids], 271-318 aa) and C-terminal domain (1171-1273 aa) of the spike protein. These findings provide in vivo evidence for optimizing vaccine manufacturing and immunization strategies for current or future viral variants.


Subject(s)
COVID-19 , Vaccines, DNA , Animals , Mice , Humans , Epitopes, T-Lymphocyte/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Immunity, Cellular , Mutation , Interferon-gamma , Antibodies, Viral , Antibodies, Neutralizing
16.
Int J Ophthalmol ; 17(2): 324-330, 2024.
Article in English | MEDLINE | ID: mdl-38371262

ABSTRACT

AIM: To present the 1-year results of a prospective cohort study investigating the efficacy, potential mechanism, and safety of orthokeratology (ortho-k) with different back optic zone diameters (BOZD) for myopia control in children. METHODS: This randomized clinical study was performed between Dec. 2020 and Dec. 2021. Participants were randomly assigned to three groups wearing ortho-k: 5 mm BOZD (5-MM group), 5.5 mm BOZD (5.5-MM group), and 6 mm BOZD (6-MM group). The 1-year data were recorded, including axial length, relative peripheral refraction (RPR, measured by multispectral refractive topography, MRT), and visual quality. The contrast sensitivity (CS) was evaluated by CSV-1000 instrument with spatial frequencies of 3, 6, 12, and 18 cycles/degree (c/d); the corneal higher-order aberrations (HOAs) were measured by iTrace aberration analyzer. The one-way ANOVA was performed to assess the differences between the three groups. The correlation between the change in AL and RPR was calculated by Pearson's correlation coefficient. RESULTS: The 1-year results of 20, 21, and 21 subjects in the 5-MM, 5.5-MM, and 6-MM groups, respectively, were presented. There were no statistical differences in baseline age, sex, or ocular parameters between the three groups (all P>0.05). At the 1-year visit, the 5-MM group had lower axial elongation than the 6-MM group (0.07±0.09 vs 0.18±0.11 mm, P=0.001). The 5-MM group had more myopic total RPR (TRPR, P=0.014), with RPR in the 15°-30° (RPR 15-30, P=0.015), 30°-45° (RPR 30-45, P=0.011), temporal (RPR-T, P=0.008), and nasal area (RPR-N, P<0.001) than the 6-MM group. RPR 15-30 in the 5.5-MM group was more myopic than that in the 6-MM group (P=0.002), and RPR-N in the 5-MM group was more myopic than that in the 5.5-MM group (P<0.001). There were positive correlations between the axial elongation and the change in TRPR (r=0.756, P<0.001), RPR 15-30 (r=0.364, P=0.004), RPR 30-45 (r=0.306, P=0.016), and RPR-N (r=0.253, P=0.047). The CS decreased at 3 c/d (P<0.001), and the corneal HOAs increased in the 5-MM group (P=0.030). CONCLUSION: Ortho-k with 5 mm BOZD can control myopia progression more effectively. The mechanism may be associated with greater myopic shifts in RPR.

17.
Front Psychol ; 15: 1267502, 2024.
Article in English | MEDLINE | ID: mdl-38362244

ABSTRACT

Introduction: Cloud fitness is transforming indoor exercise for young people in China. Recent studies have explored the correlation between media use and health-promoting behavior by examining the motivation of individuals and the credibility of influencers. However, the role of media affordance has thus far been largely overlooked. Drawing on the theory of Stimulus-Organism-Response (SOR), the study investigated the indirect effect of visibility affordance on the intention to exercise with fitness influencers in the context of cloud fitness through psychological variables. Methods: This paper, based on the online survey data (N = 456), analyses the effect of visibility affordance on the intention to fitness following with influencers. A moderated parallel mediation model was constructed to examine the relationship among related variables. Results: The paper draws the following conclusions: (1) Visibility affordance is positively related to the intention to exercise with fitness influencers. (2) Both the sense of social presence and immersion positively mediate the relationship between visibility affordance and the intention to exercise with fitness influencers. (3) The perceived popularity of the influencer positively moderates the relationship between social presence and the intention to exercise with fitness influencers and moderates the mediating role of social presence. Discussion: Consequently, this study enhances the existing body of knowledge in exercise behavior and health communication literature, and provides practical implications for short video platform, influencers and individuals in promoting healthier behaviors.

18.
Chemosphere ; 352: 141297, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38296211

ABSTRACT

The ubiquitous contamination of surfactants in wastewater has raised global concerns. Photocatalysis is deemed as a promising yet challenging approach for the decomposition of surfactant residues. Herein, a novel Z-scheme heterojunction of Bi4O5Br2/Bi2S3 with covalent S-O bonds was prepared via a facile one-pot hydrothermal and subsequent annealing process. The prepared optimal Bi4O5Br2/Bi2S3 composite exhibited remarkable photo-degradation activity towards the sodium dodecylbenzene sulfonate (SDBS). The Z-scheme reaction mechanism was proposed and validated by meticulous analysis of quenching tests, ESR spectroscopy and DFT calculations. Furthermore, the presence of chemical S-O linkages between Bi4O5Br2 and Bi2S3 was identified via FT-IR and XPS analyses, which served as a distinct bridge to modify the Z-scheme route for carrier transport. The Z-scheme heterostructure, in conjunction with chemical S-O bonds, synergistically enhanced the separation rate of electron-hole pairs and thus greatly boosted the photocatalytic activity. Additionally, the possible degradation pathways of SDBS were proposed by using HR-MS technology. Moreover, real hotel laundry wastewater could be efficiently disposed by the photocatalysis of the Bi4O5Br2/Bi2S3 with a decrease in the COD value from 428 to 74 mg/L, indicating that the fabricated Z-scheme heterojunction hold great promise for effectively removing refractory surfactant contaminants from aquatic environment.


Subject(s)
Benzenesulfonates , Pulmonary Surfactants , Wastewater , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents
19.
Quant Imaging Med Surg ; 14(1): 1039-1060, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223121

ABSTRACT

Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality. In recent years, imaging diagnosis of DR-TB has developed rapidly, but there is a lack of consistent understanding. To this end, the Infectious Disease Imaging Group, Infectious Disease Branch, Chinese Research Hospital Association; Infectious Diseases Group of Chinese Medical Association of Radiology; Digital Health Committee of China Association for the Promotion of Science and Technology Industrialization, and other organizations, formed a group of TB experts across China. The conglomerate then considered the Chinese and international diagnosis and treatment status of DR-TB, China's clinical practice, and evidence-based medicine on the methodological requirements of guidelines and standards. After repeated discussion, the expert consensus of imaging diagnosis of DR-PB was proposed. This consensus includes clinical diagnosis and classification of DR-TB, selection of etiology and imaging examination [mainly X-ray and computed tomography (CT)], imaging manifestations, diagnosis, and differential diagnosis. This expert consensus is expected to improve the understanding of the imaging changes of DR-TB, as a starting point for timely detection of suspected DR-TB patients, and can effectively improve the efficiency of clinical diagnosis and achieve the purpose of early diagnosis and treatment of DR-TB.

20.
J Sci Food Agric ; 104(4): 2252-2261, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37971866

ABSTRACT

BACKGROUND: Plant-based yogurts are suffering from the common problems, such as an unattractive color, stratified texture state and rough taste. Therefore, it is urgent to develop a novel processing method to improve the quality and extend the storage life of hempseed yogurt. In the present study, hempseed yogurt was microfluidized prior to fermentation. The effects of microfluidization on microstructure, particle size, mechanical properties, sensory acceptability, variations in pH and titratable acidity, lactic acid bacteria (LAB) counts, and stability of hempseed yogurt during 20 days of storage were investigated. RESULTS: Microfluidization contributed to the production of hempseed yogurt as a result of the better physicochemical properties compared to normal homogenization. Specifically, microfluidization reduced the particle size of hempseed yogurt with a uniform particle distribution, increased water holding capacity, and improved texture and rheological properties. These advancements resulted in higher sensory scores for the yogurt. Furthermore, during storage, microfluidization effectively inhibited the post-acidification process of hempseed yogurt, and increased LAB counts and storage stability. CONCLUSION: Microfluidization improved the physicochemical properties and storage stability of hempseed yogurt. Our findings support the application of microfluidization in hempseed yogurt and provide a new approach for enhancing the quality of plant-based alternatives that meet consumers' demands for high-quality food products. © 2023 Society of Chemical Industry.


Subject(s)
Taste , Yogurt , Yogurt/microbiology , Chemical Phenomena , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL